Skip to main content
Log in

Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. 1st ed. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  2. Yu WH, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60.

    Article  CAS  Google Scholar 

  3. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50.

    Article  CAS  Google Scholar 

  4. Choi SUS. Nanofluids: from vision to reality through research. J Heat Transf Trans ASME. 2009;131(3):133106.

    Article  Google Scholar 

  5. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  Google Scholar 

  6. Wang LQ, Wei X. Nanofluids: synthesis, heat conduction, and extension. J Heat Transf Trans ASME. 2009;131(3):033102.

    Article  Google Scholar 

  7. Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89–101.

    Article  CAS  Google Scholar 

  8. Gowda R, Sun H, Wang P, Charmchi M, Gao F, Gu Z, Budhlall B. Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids. Adv Mech Eng. 2010;. doi:10.1155/2010/807610.

    Google Scholar 

  9. Özerinç S, Kakaç S, Yazicioğlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid. 2010;8:145–70.

    Article  Google Scholar 

  10. Wang L, Fan J. Nanofluids research: key issues. Nanoscale Res Lett. 2010;5:1241–52.

    Article  Google Scholar 

  11. Masoud Hosseini S, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101:113–8.

    Article  Google Scholar 

  12. Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf Trans ASME. 2011;133(4):040801.

    Article  Google Scholar 

  13. Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6:124–35.

    Article  Google Scholar 

  14. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  15. Sommers AD, Yerkes KL. Experimental investigation into the convective heat transfer and system-level effects of Al2O3–propanol nanofluid. J Nanopart Res. 2010;12:1003–14.

    Article  CAS  Google Scholar 

  16. Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data. 2010;55:653–61.

    Article  CAS  Google Scholar 

  17. Zhou LP, Wang BX, Peng XF, Du XZ, Yang YP. On the specific heat capacity of CuO nanofluid. Adv Mech Eng. 2010;. doi:10.1155/2010/172085.

    Google Scholar 

  18. Wei C, Nan Z, Wang X, Tan Z. Investigation on thermodynamic properties of a water-based hematite nanofluid. J Chem Eng Data. 2010;55:2524–8.

    Article  CAS  Google Scholar 

  19. Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow. 2009;30:691–9.

    Article  CAS  Google Scholar 

  20. Nan Z, Zhang P, Yu A, Wei C, Shi Q, Tan Z. Novel synthesis of β-FeOOH nanofluid and determination of its heat capacity by an adiabatic calorimeter. Chin J Chem. 2009;27:1249–53.

    Article  CAS  Google Scholar 

  21. Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf Trans ASME. 2009;131(7):071601.

    Article  Google Scholar 

  22. Nelson IC, Banerjee D, Ponnappan R. Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Transf. 2009;23(4):752–61.

    Article  CAS  Google Scholar 

  23. Zhou SQ, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123.

    Article  Google Scholar 

  24. Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19:315701.

    Article  CAS  Google Scholar 

  25. Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminium oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774–81.

    Article  CAS  Google Scholar 

  26. Vargaftik AB, Filippov LP, Tarzimanov AA, Totskii EE. Handbook of thermal conductivity of liquids and gases. Boca Raton: CRC Press Inc.; 1994.

    Google Scholar 

  27. Le Neindre B. Thermal conductivity. In: Marsh KN, editor. Recommended reference materials for the realization of physicochemical properties. Oxford: Blackwell Scientific Publications; 1987. p. 321–70.

    Google Scholar 

  28. Labudová G, Vozárová V. Uncertainty of the thermal conductivity measurement using the transient hot wire method. J Therm Anal Calorim. 2002;67:257–65.

    Article  Google Scholar 

  29. Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94(1):37–43.

    Article  CAS  Google Scholar 

  30. Barbés B, Páramo R, Sobrón F, Blanco E, Casanova C. Thermal conductivity measurements of liquids by means of a microcalorimeter. J Therm Anal Calorim. 2011;104:805–12.

    Article  Google Scholar 

  31. Calvet E, Prat H. Microcalorimétrie. Applications Physico-Chimiques et Biologiques. Paris: Masson et Cie; 1956.

    Google Scholar 

  32. Le Parlouër P, Rouyer M, Pithon F. New experimental vessels for calorimetric investigations of gases and liquids on the Setaram C 80. Thermochim Acta. 1985;92:375–8.

    Article  Google Scholar 

  33. Pithon F, Rouyer M. Vapour pressure, heat of evaporation and thermal conductivity determination by means of the C 80 microcalorimeter. Thermochim Acta. 1987;14:91–6.

    Article  Google Scholar 

  34. Ramires MLV, Nieto de Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA. Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data. 1995;24(3):1377–81.

    Article  CAS  Google Scholar 

  35. Assael MJ, Charitidou E, Nieto de Castro CA, Wakeham WA. The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot-wire method. Int J Thermophys. 1987;8(6):663–70.

    Article  CAS  Google Scholar 

  36. Zábranský M, Růžička Jr V, Majer V, Domalski ES. Heat capacity of liquids: volume I—critical review and recommended values. J Phys Chem Ref Data. Monograph No. 6. Washington: American Chemical Society and American Institute of Physics; 1996.

  37. Páramo R, Zouine M, Sobrón F, Casanova C. Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K. Int J Thermophys. 2003;24(1):185–99.

    Article  Google Scholar 

  38. Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:084314.

    Article  Google Scholar 

  39. Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, DiMelfi RJ. Novel thermal properties of nanostructured materials. Mat Sci Forum. 1999;312–314:629–34.

    Article  Google Scholar 

  40. Wang X, Su X, Choi SUS. Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  41. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.

    Article  CAS  Google Scholar 

  42. Chon CH, Kihm KD. Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf. 2005;127(8):810.

    Article  Google Scholar 

  43. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76:061203.

    Article  Google Scholar 

  44. Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;115:1129–36.

    Article  Google Scholar 

  45. Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015–31.

    Article  CAS  Google Scholar 

  46. Kwek D, Crivoi A, Duan F. Effects of temperature and particle size on the thermal property measurements of Al2O3–water nanofluids. J Chem Eng Data. 2010;55:5690–5.

    Article  CAS  Google Scholar 

  47. Zhang Z, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:5593–9.

    Google Scholar 

  48. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  49. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME. 1999;121:280–9.

    Article  CAS  Google Scholar 

  50. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1891.

    Google Scholar 

  51. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  52. Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692–9.

    Article  CAS  Google Scholar 

  53. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8.

    Article  CAS  Google Scholar 

  54. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen HS, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding YL, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao JW, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong HP, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang YR, Jin LW, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim JH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song PX, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen DS, Witharana S, Yang C, Yeh WH, Zhao WH, Zhou SQ. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312.

    Article  Google Scholar 

  55. Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf Trans ASME. 2010;132(10):102402.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ministerio de Educación y Ciencia (Grant no. CTQ2006-15537-C02/PPQ), Spain, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Casanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbés, B., Páramo, R., Blanco, E. et al. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim 111, 1615–1625 (2013). https://doi.org/10.1007/s10973-012-2534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2534-9

Keywords

Navigation