Abstract
Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. 1st ed. Hoboken: Wiley; 2007.
Yu WH, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60.
Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50.
Choi SUS. Nanofluids: from vision to reality through research. J Heat Transf Trans ASME. 2009;131(3):133106.
Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.
Wang LQ, Wei X. Nanofluids: synthesis, heat conduction, and extension. J Heat Transf Trans ASME. 2009;131(3):033102.
Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89–101.
Gowda R, Sun H, Wang P, Charmchi M, Gao F, Gu Z, Budhlall B. Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids. Adv Mech Eng. 2010;. doi:10.1155/2010/807610.
Özerinç S, Kakaç S, Yazicioğlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid. 2010;8:145–70.
Wang L, Fan J. Nanofluids research: key issues. Nanoscale Res Lett. 2010;5:1241–52.
Masoud Hosseini S, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101:113–8.
Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf Trans ASME. 2011;133(4):040801.
Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6:124–35.
Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.
Sommers AD, Yerkes KL. Experimental investigation into the convective heat transfer and system-level effects of Al2O3–propanol nanofluid. J Nanopart Res. 2010;12:1003–14.
Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data. 2010;55:653–61.
Zhou LP, Wang BX, Peng XF, Du XZ, Yang YP. On the specific heat capacity of CuO nanofluid. Adv Mech Eng. 2010;. doi:10.1155/2010/172085.
Wei C, Nan Z, Wang X, Tan Z. Investigation on thermodynamic properties of a water-based hematite nanofluid. J Chem Eng Data. 2010;55:2524–8.
Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow. 2009;30:691–9.
Nan Z, Zhang P, Yu A, Wei C, Shi Q, Tan Z. Novel synthesis of β-FeOOH nanofluid and determination of its heat capacity by an adiabatic calorimeter. Chin J Chem. 2009;27:1249–53.
Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf Trans ASME. 2009;131(7):071601.
Nelson IC, Banerjee D, Ponnappan R. Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Transf. 2009;23(4):752–61.
Zhou SQ, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123.
Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19:315701.
Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminium oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774–81.
Vargaftik AB, Filippov LP, Tarzimanov AA, Totskii EE. Handbook of thermal conductivity of liquids and gases. Boca Raton: CRC Press Inc.; 1994.
Le Neindre B. Thermal conductivity. In: Marsh KN, editor. Recommended reference materials for the realization of physicochemical properties. Oxford: Blackwell Scientific Publications; 1987. p. 321–70.
Labudová G, Vozárová V. Uncertainty of the thermal conductivity measurement using the transient hot wire method. J Therm Anal Calorim. 2002;67:257–65.
Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94(1):37–43.
Barbés B, Páramo R, Sobrón F, Blanco E, Casanova C. Thermal conductivity measurements of liquids by means of a microcalorimeter. J Therm Anal Calorim. 2011;104:805–12.
Calvet E, Prat H. Microcalorimétrie. Applications Physico-Chimiques et Biologiques. Paris: Masson et Cie; 1956.
Le Parlouër P, Rouyer M, Pithon F. New experimental vessels for calorimetric investigations of gases and liquids on the Setaram C 80. Thermochim Acta. 1985;92:375–8.
Pithon F, Rouyer M. Vapour pressure, heat of evaporation and thermal conductivity determination by means of the C 80 microcalorimeter. Thermochim Acta. 1987;14:91–6.
Ramires MLV, Nieto de Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA. Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data. 1995;24(3):1377–81.
Assael MJ, Charitidou E, Nieto de Castro CA, Wakeham WA. The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot-wire method. Int J Thermophys. 1987;8(6):663–70.
Zábranský M, Růžička Jr V, Majer V, Domalski ES. Heat capacity of liquids: volume I—critical review and recommended values. J Phys Chem Ref Data. Monograph No. 6. Washington: American Chemical Society and American Institute of Physics; 1996.
Páramo R, Zouine M, Sobrón F, Casanova C. Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K. Int J Thermophys. 2003;24(1):185–99.
Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:084314.
Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, DiMelfi RJ. Novel thermal properties of nanostructured materials. Mat Sci Forum. 1999;312–314:629–34.
Wang X, Su X, Choi SUS. Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.
Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.
Chon CH, Kihm KD. Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf. 2005;127(8):810.
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76:061203.
Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;115:1129–36.
Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015–31.
Kwek D, Crivoi A, Duan F. Effects of temperature and particle size on the thermal property measurements of Al2O3–water nanofluids. J Chem Eng Data. 2010;55:5690–5.
Zhang Z, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:5593–9.
Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water based nanofluids. Int J Therm Sci. 2009;48:363–71.
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME. 1999;121:280–9.
Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1891.
Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187–91.
Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692–9.
Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8.
Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen HS, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding YL, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao JW, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong HP, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang YR, Jin LW, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim JH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song PX, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen DS, Witharana S, Yang C, Yeh WH, Zhao WH, Zhou SQ. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312.
Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf Trans ASME. 2010;132(10):102402.
Acknowledgements
The authors acknowledge Ministerio de Educación y Ciencia (Grant no. CTQ2006-15537-C02/PPQ), Spain, for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barbés, B., Páramo, R., Blanco, E. et al. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim 111, 1615–1625 (2013). https://doi.org/10.1007/s10973-012-2534-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-012-2534-9