Skip to main content

Studies on new hybrid materials prepared by both Diels–Alder and Michael addition reactions

Abstract

New polyurethane chemically crosslinked networks containing silica were synthesized by both Diels–Alder polymerization and Michael addition reaction. Structural characterization of the products was evidenced by proton nuclear magnetic resonance and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy techniques. Differential scanning calorimetry was used to demonstrate the thermally remendable character of the materials obtained through Diels–Alder polymerization. The influence of increasing silica content on the glass transition temperatures was studied. It was observed that the glass transition temperatures increased with increasing silica content. Absolute heat capacities and crosslinking densities were determined for the thermoreversible materials. A comparison between materials obtained through Diels–Alder process and Michael addition method was studied. A kinetic study was conducted via an isoconversional method. Morphological studies were conducted by atomic force microscopy technique.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Teramoto N, Arai Y, Shibata M. Thermo-reversible Diels–Alder polymerization of difurfurylidene trehalose and bismaleimides. Carbohydr Polym. 2006;64:78–84.

    Article  CAS  Google Scholar 

  2. Carlson HC, Goretta KC. Basic materials research programs at the US air force office of scientific research. Mater Sci Eng Part B. 2006;132:2–7.

    Article  CAS  Google Scholar 

  3. Dry CM, Sottos NR. Passive smart self-repair in polymer matrix composite materials. Conference on recent advances in adaptive and sensory materials and their applications. Virginia: Technomic; 1992. p. 438–444.

  4. Dry CM. Passive smart materials for sensing and actuation. J Intell Mater Sys Struct. 1993;4:420–5.

    Article  Google Scholar 

  5. Schmets AJM, van der Zwaag S. Proceedings of the first international conference on self healing materials. In: Supplement to springer series in materials science. Noordwijk: Springer; 2007.

  6. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S. Autonomic healing of polymer composites. Nature. 2001;409:794–7.

    Article  CAS  Google Scholar 

  7. Endo T, Nagai D. A novel construction of ring-opening polymerization and chemical recycling system. Macromol Symp. 2005;226:79–86.

    Article  CAS  Google Scholar 

  8. Sassw F, Emig G. Chemical recycling of polymers. Chem Eng Technol. 1998;21:777–89.

    Article  Google Scholar 

  9. Chen X, Wudl F, Mal AK, Shen H, Nutt SR. New thermally remendable highly cross-linked polymeric materials. Macromolecules. 2003;36:1802–7.

    Article  CAS  Google Scholar 

  10. Chino K, Ashiura M. Thermoreversible crosslinking rubber using supramolecular hydrogen bonding networks. Macromolecules. 2001;34:9201.

    Article  CAS  Google Scholar 

  11. Gheneim R, Perez-Berumen C, Gandini A. Diels–Alder reactions with novel polymeric dienes and dienophiles: synthesis of reversibly cross-linked elastomers. Macromolecules. 2002;35:7246–53.

    Article  CAS  Google Scholar 

  12. Liu YL, Chen YW. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol Chem Phys. 2007;208:224–32.

    Article  CAS  Google Scholar 

  13. Brand T, Klapper M. Control of viscosity through reversible addition of telechelics via repetitive Diels–Alder reaction in bulk. Des Monomer Polym. 1999;2:287–309.

    Article  CAS  Google Scholar 

  14. Diakoumakos CD, Mikroyannidis JA. Polyimides derived from Diels–Alder polymerization of furfuryl-substituted maleamic acids or from the reaction of bismaleamic with bisfurfurylpyromellitamic acids. J Polym Sci Part A. 1992;30:2559–67.

    Article  CAS  Google Scholar 

  15. Gandini A, Belgacem MN. Furan in polymer chemistry. Prog Polym Sci. 1997;22:1203–379.

    Article  CAS  Google Scholar 

  16. Goiti E, Huglin MB, Rego JM. Some observations on the copolymerization of styrene with furfuryl methacrylate. Polymer. 2001;42:10187–93.

    Article  CAS  Google Scholar 

  17. Kennedy JP, Carlson GM. Synthesis, characterization, and Diels–Alder extension of cyclopentadiene telechelic polyisobutylene. IV. α,ω-Di(3-cyclopentadienyl-propyldimethylsilyl)polyisobutylene. J Polym Sci Polym Chem Ed. 1983;21:3551–61.

    Article  CAS  Google Scholar 

  18. Laita H, Boufi S, Gandini A. The application of the Diels–Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. Eur Polym J. 1997;33:1203–11.

    Article  CAS  Google Scholar 

  19. Mikroyannidis JA. Synthesis and Diels–Alder polymerization of furfurylidene and furfuryl-substituted maleamic acids. J Polym Sci Part A. 1992;30:125–32.

    Article  CAS  Google Scholar 

  20. Gaina V, Ursache O, Gaina C, Buruiana E. Novel thermally-reversible epoxy-urethane networks. Des Monomer Polym. 2012;15:63–73.

    Article  CAS  Google Scholar 

  21. Vera-Graziano R, Hernandez-Sanchez F, Cauich-Rodriguez JV. Study of crosslinking density in polydimethylsiloxane networks by DSC. J Appl Polym Sci. 1995;55:1317–27.

    Article  CAS  Google Scholar 

  22. Furukawa GT, Douglas TB, McCloskey RE, Ginnings DC. Thermal properties of aluminum oxide from 0 K to 1200 K. J Res Nat Bur Stand. 1956;57:67–82.

    Article  CAS  Google Scholar 

  23. van Ekeren PJ. Thermodynamic background to thermal analysis and calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 1998. p. 90–1.

    Google Scholar 

  24. Haines PJ, Reading M, Wilburn FW. Differential thermal analysis and differential scanning calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 1998. p. 340–1.

    Google Scholar 

  25. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  26. Rabek JF, editor. In: Experimental methods in polymer chemistry. Chichester: Wiley; 1980. p. 241.

  27. Hagiwara T, Suzuki I, Takeuchi K, Hamana H, Narita T. Synthesis and polymerization of N-(4-vinylphenyl)maleimide. Macromolecules. 1991;24:6856–8.

    Article  CAS  Google Scholar 

  28. Wu W, Wang D, Wang P, Zhu P, Ye C. Thermally stable nonlinear optical polyimide functionalized by N,N-diallylamino-substituted chromophore. J Appl Polym Sci. 2000;77:2939–47.

    Article  CAS  Google Scholar 

  29. Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  31. Hatakeyama T, Liu Z, editors. Handbook of thermal analysis. Chichester: Wiley; 1998. p. 47–8.

    Google Scholar 

  32. Hatakeyama T, Liu Z, editors. Handbook of thermal analysis. Chichester: Wiley; 1998. p. 359–60.

    Google Scholar 

  33. Tian Q, Rong MZ, Zhang MQ, Yuan YC. Optimization of thermal remendability of epoxy via blending. Polymer. 2010;51:1779–85.

    Article  CAS  Google Scholar 

  34. Yu YY, Chen CY, Chen WC. Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer. 2003;44:593–601.

    Article  CAS  Google Scholar 

  35. Kavitha AA, Singha NK. Smart “all acrylate” ABA triblock copolymer bearing reactive functionality via atom transfer radical polymerization (ATRP): demonstration of a “click reaction” in thermoreversible property. Macromolecules. 2010;43:3193–205.

    Article  CAS  Google Scholar 

  36. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F. A thermally re-mendable cross-linked polymeric material. Science. 2002;295:1698–702.

    Article  CAS  Google Scholar 

  37. Zhang Y, Broekhuis AA, Picchioni F. Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules. 2009;42:1906–12.

    Article  CAS  Google Scholar 

  38. Kavitha AA, Singha NK. Atom-transfer radical copolymerization of furfuryl methacrylate (FMA) and methyl methacrylate (MMA): a thermally-amendable copolymer. Macromol Chem Phys. 2007;208:2569–77.

    Article  CAS  Google Scholar 

  39. Wouters M, Craenmehr E, Tempelaars K, Fischer H, Stroeks N, van Zanten J. Preparation and properties of a novel remendable coating concept. Prog Org Coat. 2009;64:156–62.

    Article  CAS  Google Scholar 

  40. Srikant SK, Arjumand AK, Mrityunjaya IA, Mahadevappa YK. Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water–isopropanol mixtures. J App Polym Sci. 2004;94:1304–15.

    Article  Google Scholar 

  41. Hsu YG, Lin FJ. Organic-inorganic composite materials from acrylonitrile–butadiene–styrene copolymers and silica through an in situ sol–gel process. J Appl Polym Sci. 2000;75:275–83.

    Article  CAS  Google Scholar 

  42. Carraher CE Jr, Pittman CU Jr. Industrial polymers handbook. Weinheim: Wiley; 2001. p. 1284.

    Google Scholar 

  43. Jothibasu S, Kumar AA, Alagar M. Synthesis of maleimide substituted polystyrene–silica hybrid utilizing Michael addition reaction. J Sol Gel Sci Technol. 2007;4:337–45.

    Article  Google Scholar 

  44. Pawelec B, Fierro JLG. Applications of thermal analysis in the preparation of catalysts and in catalysis. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 2003. p. 178.

    Google Scholar 

  45. Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 1998. p. 169–71.

    Google Scholar 

  46. Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 1998. p. 190–4.

    Google Scholar 

  47. Opferman J. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  Google Scholar 

  48. Wahab MA, Kim I, Ha CS. Microstructure and properties of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA)-p-phenylene diamine (PDA) polyimide/poly(vinylsilsesquioxane) hybrid nanocomposite films. J Polym Sci Part A. 2004;42:5189–519.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0187.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristian-Dragos Varganici or Bogdan C. Simionescu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varganici, CD., Ursache, O., Gaina, C. et al. Studies on new hybrid materials prepared by both Diels–Alder and Michael addition reactions. J Therm Anal Calorim 111, 1561–1570 (2013). https://doi.org/10.1007/s10973-012-2532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2532-y

Keywords

  • Hybrid materials
  • Retro-Diels–Alder
  • Michael addition
  • Thermal remendability