Skip to main content
Log in

Effect of organically modified montmorillonite filler on the dynamic cure kinetics, thermal stability, and mechanical properties of brominated epoxy/aniline formaldehyde condensates system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocomposites, based on tetrabromo-bisphenol-A epoxy and aniline formaldehyde condensates, containing 5 and 10 % organically modified montmorillonite (O-MMT), were prepared. The morphologies of these nanocomposites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influences of O-MMT on the dynamic cure kinetics, thermal stability, and mechanical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and non-destructive ultrasonic testing techniques. The XRD and SEM results indicated a good dispersion of O-MMT within the epoxy matrix. The relation between the activation energy, E a, and the degree of cure, α, for the examined systems was obtained by applying model-free isoconversional Kissinger–Akahira–Sunose method. As α increases, E a increases gradually, almost independent of the amount of O-MMT. The dynamic cure kinetics of the neat epoxy system as well as its nanocomposites were described by Šestàk–Berggren, [SB (m, n)], autocatalytic model. The O-MMT enhances the thermal stability of the examined epoxy system. The results of the mechanical properties indicated that the addition of O-MMT enhances the Young’s and shear elastic modulus and microhardness. The values of these parameters increase with increasing O-MMT loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao JG, Zhao M, Yang LT. Kinetics of epoxy resin formation from bisphenol-S, tetrabromobisphenol-A, and epichlorohydrin. J Appl Polym Sci. 1997;63:1137–42.

    Article  CAS  Google Scholar 

  2. John T, Lutz Jr. Thermoplastic polymer additives. New York: Marcel Dekker Inc; 1989. p. 112.

    Google Scholar 

  3. Gilman JW. Flammability and thermal stability studies of polymer-layered silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.

    Article  CAS  Google Scholar 

  4. Jang BN, Costache M, Wilkie CA. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer. 2005;46:10678–87.

    Article  CAS  Google Scholar 

  5. Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. 2010;35:902–58.

    Article  CAS  Google Scholar 

  6. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  7. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  8. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties: part I, factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta. 2007;453:75–96.

    Article  CAS  Google Scholar 

  9. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties: part II, thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta. 2007;454:1–22.

    Article  CAS  Google Scholar 

  10. Liu Y, Zhao M, Shen S, Gao J. Curing kinetics, thermal property, and stability of tetrabromo-bisphenol-A epoxy resin with 4,4′-diaminodiphenyl ether. J Appl Polym Sci. 1998;70:1991–2000.

    Article  CAS  Google Scholar 

  11. Kaya E, Tanoğlu M, Okur S. Layered clay/epoxy nanocomposites: thermomechanical, flame retardancy, and optical properties. J Appl Polym Sci. 2008;109:834–40.

    Article  CAS  Google Scholar 

  12. Tsai J-L, Shin-Ming, Hsu S-M. Investigating mechanical properties of epoxy/organoclay nanocomposites. J Chin Inst Eng. 2008;31:9–16.

    Article  CAS  Google Scholar 

  13. Ngo T-D, Ton-That M-T, Hoa SV, Cole KC. Curing kinetics and mechanical properties of epoxy nanocomposites based on different organoclays. Polym Eng Sci. 2007;47:649–61.

    Article  CAS  Google Scholar 

  14. Shokrolahi F, Sadi M, Shokrolahi P. A study of curing kinetics of bisphenol-F using benzyl dimethyl amine by isothermal DSC. J Therm Anal Calorim. 2005;82:151–6.

    Article  CAS  Google Scholar 

  15. Vinnik RM, Roznyatovsky VA. Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction: part VIII. A comparative study of some epoxy-amine reactions. J Therm Anal Calorim. 2006;85:455–61.

    Article  CAS  Google Scholar 

  16. Román F, Montserrat S, Hutchinson JM. On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. J Therm Anal Calorim. 2007;87:113–8.

    Article  Google Scholar 

  17. Alzina C, Sbirrazzuoli N, Mija A. Epoxy/amine based nanocomposites reinforced by silica nanoparticles. Relationships between morphologic aspects, cure kinetics, and thermal properties. J Phys Chem C. 2011;115:22789–95.

    Article  CAS  Google Scholar 

  18. García del Cid MA, Prolongo MG, Salom C, Arribas C, Sánchez-Cabezudo M, Masegosa RM. The effect of stoichiometry on curing and properties of epoxy–clay nanocomposites. J Therm Anal Calorim. 2012;108:449–741.

    Article  Google Scholar 

  19. Guo Q, Huang Y, Zhang Y-Y, Zhu L-R, Zhang B-L. Curing behavior of epoxy resins with a series of novel curing agents containing 4,4-biphenyl and varying methylene units. J Therm Anal Calorim. 2010;102:915–22.

    Article  CAS  Google Scholar 

  20. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an Overview. J Compost Mater. 2006;40:1511–75.

    Google Scholar 

  21. Maity T, Samanta BC, Dalai S. Toughened epoxy with amine functional aniline formaldehyde condensate (AFAFC). Pigment Resin Technol. 2006;35:12–21.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqued LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  23. Vinnik R, Roznyatovsky V. Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction. J Therm Anal Calorim. 2003;73:807–17.

    Article  CAS  Google Scholar 

  24. Liu X, Sheng X, Lee J, Kessler M. Isothermal cure characterization of dicyclopentadiene. J Therm Anal Calorim. 2007;89:453–7.

    Article  CAS  Google Scholar 

  25. Pagano RL, Calado VMA, Tavares FW, Biscaia EC. Parameter estimation of kinetic cure using DSC non-isothermal data. J Therm Anal Calorim. 2011;103:495–9.

    Article  CAS  Google Scholar 

  26. Saad GR, Elhamid EE, Elmenyawy SA. Dynamic cure kinetics and thermal degradation of brominated epoxy resin–organoclay based nanocomposites. Thermochim Acta. 2011;524:186–93.

    Article  CAS  Google Scholar 

  27. Maity T, Samanta BC, Dalai S, Banthia AK. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Mater Sci Eng A. 2007;646:38–46.

    Google Scholar 

  28. Gao J-G, Zhao M. Isothermal curing kinetics and thermal degradation of o-CFER/MeTHPA/O-MMT nanocomposite. Int J Polym Mater. 2008;57:101–13.

    Article  CAS  Google Scholar 

  29. Green RE Je. Ultrasonic investigation of mechanical properties of solids. Treatise on materials science and technology. vol. 3. New York: Academic Press; 1973. pp. 1–155.

  30. ASTM E494 01. Standard practice for measuring of ultrasonic velocity in materials, 2001.

  31. Hussain F, Chen J, Hojjati M. Epoxy-silicate nanocomposites: cure monitoring and characterization. Mater Sci Eng A. 2007;445–446:467–76.

    Google Scholar 

  32. Montserrat S, Román F, Hutchinson JM, Campos L. Analysis of the cure of epoxy based layered silicate nanocomposites: reaction kinetics and nanostructure development. J Appl Polym Sci. 2008;108:923–38.

    Article  CAS  Google Scholar 

  33. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–1706.

    Google Scholar 

  34. Akahira T, Sunose T. Transactions of joint convention of four electrical institutes, paper no. 246 (1969) research report. vol. 16. Chiba Inst Technol. 1971; 16:22–31.

  35. Flynn JH, Wall LA. General treatment of the thermogravimetric of polymers. J Res Natl Bureau Stand Sect A. 1996;70:487–523.

    Google Scholar 

  36. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc (Jpn). 1965;38:1881–6.

    Article  CAS  Google Scholar 

  37. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C. 1965;6:183–95.

    Google Scholar 

  38. Wan J, Li B-G, Fan H, Bu Z-Y, Xu C-J. Nonisothermal reaction, thermal stability and dynamic mechanical properties of epoxy system with novel nonlinear multifunctional polyamine hardener. Thermochim Acta. 2010;511:51.

    Article  CAS  Google Scholar 

  39. Prime RB. Thermosets. In: Turi EA, editor. Thermal characterization of polymeric materials. New York: Academic; 1997.

    Google Scholar 

  40. Vyazovkin S. Conversion dependence of activation energy for model DSC curves of consecutive reactions. Thermochim Acta. 1994;236:1–13.

    Article  CAS  Google Scholar 

  41. Alonso MV, Oliet M, Garcia J, Rodriguez F, Echeverria. Gelation and isoconversional kinetic analysis of lignin–phenol–formaldehyde resol resins cure. Chem Eng J. 2006;122:159.

    Article  CAS  Google Scholar 

  42. Malek J, Sestak J, Rouquerol F, Criado JM, Ortega A. Possibilities of two nonisothermal procedures (temperature- or rate-controlled) for kinetical studies. J Therm Anal. 1992;38:71–87.

    Article  CAS  Google Scholar 

  43. Montserrat S, Malek J, Colomer P. Thermal degradation kinetics of epoxy–anhydride resins: I. Influence of a silica filler. Thermochim Acta. 1998;313:83–95.

    Article  CAS  Google Scholar 

  44. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increased temperature. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

  45. Senum GI, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1997;11:445–7.

    Article  Google Scholar 

  46. Wan J, Li B-G, Fan H, Bu Z-Y, Xu C-J. Nonisothermal reaction kinetics of DGEBA with four-armed starlike polyamine with benzene core (MXBDP) as novel curing agent. Thermochim Acta. 2010;510:46–52.

    Article  CAS  Google Scholar 

  47. Kotsilkova R, Petkova V, Pelovski Y. Thermal analysis of polymer-silicate nanocomposites. J Therm Anal Calorim. 2001;64:591–8.

    Article  CAS  Google Scholar 

  48. Lakshmi MS, Narmadha B, Reddy BSR. Enhanced thermal stability and structural characteristics of different MMT-clay/epoxy-nanocomposite materials. Polym Degrad Stab. 2008;93:201–13.

    Article  CAS  Google Scholar 

  49. Guo B, Jia D, Cai C. Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur Polym J. 2004;40:1743–8.

    Article  CAS  Google Scholar 

  50. Wei CL, Zhang MQ, Rong MZ, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compost Sci Technol. 2002;62:1327–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal R. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, G.R., Naguib, H.F. & Elmenyawy, S.A. Effect of organically modified montmorillonite filler on the dynamic cure kinetics, thermal stability, and mechanical properties of brominated epoxy/aniline formaldehyde condensates system. J Therm Anal Calorim 111, 1409–1417 (2013). https://doi.org/10.1007/s10973-012-2515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2515-z

Keywords

Navigation