Skip to main content
Log in

Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The polymorphous crystallization and multiple melting behavior of poly(l-lactic acid) (PLLA) with an optical purity of 92 % were investigated after isothermally crystallized from the melt state by wide-angle X-ray diffraction and differential scanning calorimetry. Owing to the low optical purity, it was found that the disordered (α′) and ordered (α) crystalline phases of PLLA were formed in the samples crystallized at lower (<95 °C) and higher (≥95 °C) temperatures, respectively. The melting behavior of PLLA is different in three regions of crystallization temperature (T c) divided into Region I (T c < 95 °C), Region II (95 °C ≤ T c < 120 °C), and Region III (T c ≥ 120 °C). In Region I, an exothermic peak was observed between the low-temperature and high-temperature endothermic peaks, which results from the solid–solid phase transition of α′-form crystal to α one. In Region II, the double-melting peaks can be mainly ascribed to the melting–recrystallization–remelting of less stable α crystals. In Region III, the single endotherm shows that the α crystals formed at higher temperatures are stable enough and melt directly without the recrystallization process during heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater. 2000;12:1841–6.

    Article  CAS  Google Scholar 

  2. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  3. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35:338–56.

    Article  CAS  Google Scholar 

  4. De Santis P, Kovacs AJ. Molecular conformation of poly(S-lactic acid). Biopolymers. 1968;6:299–306.

    Article  Google Scholar 

  5. Miyata T, Masuko T. Morphology of poly(l-lactide) solution-grown crystals. Polymer. 1997;38:4003–9.

    Article  CAS  Google Scholar 

  6. Alemán C, Lotz B, Puiggali J. Crystal structure of the α-form of poly(l-lactide). Macromolecules. 2001;34:4795–801.

    Article  Google Scholar 

  7. Sasaki S, Asakura T. Helix distortion and crystal structure of the α form of poly(l-lactide). Macromolecules. 2003;36:8385–90.

    Article  CAS  Google Scholar 

  8. Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 1982;23:1587–93.

    Article  CAS  Google Scholar 

  9. Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P. Crystal structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules. 1990;23:634–42.

    Article  CAS  Google Scholar 

  10. Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(l-lactide). Polymer. 2000;41:8921–30.

    Article  CAS  Google Scholar 

  11. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer. 2000;41:8909–19.

    Article  CAS  Google Scholar 

  12. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules. 2005;38:8012–21.

    Article  CAS  Google Scholar 

  13. Zhang J, Tashiro K, Domb AJ, Tsuji H. Confirmation of disorder α form of poly(l-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp. 2006;242:274–8.

    Article  CAS  Google Scholar 

  14. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules. 2007;40:6898–905.

    Article  CAS  Google Scholar 

  15. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(l-lactide). J Appl Polym Sci. 2008;107:54–62.

    Article  CAS  Google Scholar 

  16. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M. Crystallization and melting behavior of poly(l-lactic acid). Macromolecules. 2007;40:9463–9.

    Article  CAS  Google Scholar 

  17. Salmerón Sánchez M, Mathot VBF, Vanden Poel G, Gómez Ribelles JL. Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules. 2007;40:7989–97.

    Article  Google Scholar 

  18. Cho TY, Strobl G. Temperature dependent variations in the lamellar structure of poly(l-lactide). Polymer. 2006;47:1036–43.

    Article  CAS  Google Scholar 

  19. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G. Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab. 2010;95:1148–59.

    Article  CAS  Google Scholar 

  20. Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). Eur Polym J. 2005;41:569–75.

    Article  Google Scholar 

  21. Di Lorenzo ML. The crystallization and melting processes of poly(l-lactic acid). Macromol Symp. 2006;234:176–83.

    Article  Google Scholar 

  22. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Crystallization behavior of poly(l-lactic acid). Polymer. 2006;47:7554–63.

    Article  CAS  Google Scholar 

  23. Krache R, Benavente R, López Majada JM, Perena JM, Cerrada ML, Pérez E. Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules. 2007;40:6871–8.

    Article  CAS  Google Scholar 

  24. De Rosa C, Auriemma F, Vinti V, Galimberti M. Equilibrium melting temperature of syndiotactic polypropylene. Macromolecules. 1998;31:6206–10.

    Article  Google Scholar 

  25. Liu T, Petermann J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.

    Article  CAS  Google Scholar 

  26. Lee Y, Porter RS. Double-melting behavior of poly(ether ether ketone). Macromolecules. 1987;20:1336–41.

    Article  CAS  Google Scholar 

  27. Lee Y, Porter RS, Lin JS. On the double-melting behavior of poly(ether ether ketone). Macromolecules. 1989;22:1756–60.

    Article  CAS  Google Scholar 

  28. Lattimer MP, Hobbs JK, Hill MJ, Barham PJ. On the origin of the multiple endotherms in PEEK. Polymer. 1992;33:3971–3.

    Article  CAS  Google Scholar 

  29. Wang ZG, Hsiao BS, Sauer BB, Kampert WG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer. 1999;40:4615–27.

    Article  CAS  Google Scholar 

  30. Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terephthalate). Polymer. 2003;44:623–33.

    Article  CAS  Google Scholar 

  31. Ju MY, Chang FC. Multiple melting behavior of poly(butylene-2,6-naphthalate). Polymer. 2001;42:5037–45.

    Article  CAS  Google Scholar 

  32. Srimoaon P, Dangseeyun N, Supaphol P. Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J. 2004;40:599–608.

    Article  CAS  Google Scholar 

  33. Yasuniwa M, Satou T. Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci Part B Polym Phys. 2002;40:2411–20.

    Article  CAS  Google Scholar 

  34. Xu Y, Xu J, Guo B, Xie X. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B Polym Phys. 2007;45:420–8.

    Article  CAS  Google Scholar 

  35. Wang Y, Bhattacharya M, Mano JF. Thermal analysis of the multiple melting behavior of poly(butylene succinate-co-adipate). J Polym Sci Part B Polym Phys. 2005;43:3077–82.

    Article  CAS  Google Scholar 

  36. Gunaratne LMWK, Shanks RA. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polym J. 2005;41:2980–8.

    Article  CAS  Google Scholar 

  37. Shan GF, Yang W, Tang XG, Yang MB, Xie BH, Fu Q, Mai YW. Multiple melting behaviour of annealed crystalline polymers. Polym Test. 2010;29:273–80.

    Article  CAS  Google Scholar 

  38. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Part B Polym Phys. 2004;42:25–32.

    Article  CAS  Google Scholar 

  39. Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(l-lactic acid). J Appl Polym Sci. 2006;100:3145–51.

    Article  Google Scholar 

  40. Ling X, Spruiell JE. Analysis of the complex thermal behavior of poly(l-lactic acid) film. I. Samples crystallized from the glassy state. J Polym Sci Part B Polym Phys. 2006;44:3200–14.

    Article  CAS  Google Scholar 

  41. Ling X, Spruiell JE. Analysis of the complex thermal behavior of poly(l-lactic acid) film. II. Samples crystallized from the melt. J Polym Sci Part B Polym Phys. 2006;44:3378–91.

    Article  CAS  Google Scholar 

  42. Shieh YT, Liu GL. Temperature-modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt-crystallized poly(l-lactic acid). J Polym Sci Part B Polym Phys. 2007;45:466–74.

    Article  CAS  Google Scholar 

  43. Yasuniwa M, Iura K, Dan Y. Melting behavior of poly(l-lactic acid): effects of crystallization temperature and time. Polymer. 2007;48:5398–407.

    Article  CAS  Google Scholar 

  44. Wang Y, Mano JF. Role of thermal history on the thermal behavior of poly(l-lactic acid) studied by DSC and optical microscopy. J Therm Anal Calorim. 2005;80:171–5.

    Article  CAS  Google Scholar 

  45. Yasuniwa M, Sakamo K, Ono Y, Kawahara W. Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer. 2008;49:1943–51.

    Article  CAS  Google Scholar 

  46. Su Z, Li Q, Liu Y, Hu GH, Wu C. Multiple melting behavior of poly(lactic acid) filled with modified carbon black. J Polym Sci Part B Polym Phys. 2009;47:1971–80.

    Article  CAS  Google Scholar 

  47. Xu HS, Dai XJ, Lamb PR, Li ZM. Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys. 2009;47:2341–52.

    Article  CAS  Google Scholar 

  48. Calafe M, Remiro PM, Cortázar MM, Calahorra ME. Cold crystallization and multiple melting behavior of poly(l-lactide) in homogeneous and in multiphasic epoxy blends. Colloid Polym Sci. 2010;288:283–96.

    Article  Google Scholar 

  49. Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(l-lactic acid-co-d-lactic acid). J Polym Sci Part B Polym Phys. 2011;49:409–13.

    Article  CAS  Google Scholar 

  50. Lan Q, Yu J, He J, Maurer FHJ, Zhang J. Thermal behavior of poly(l-lactide) having low l-isomer content of 94 % after compressed CO2 treatment. Macromolecules. 2010;43:8602–9.

    Article  CAS  Google Scholar 

  51. Sarasua JR, Prud’homme RE, Wisniewski M, Borgne AL, Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–905.

    Article  CAS  Google Scholar 

  52. Kolstad JJ. Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci. 1996;62:1079–91.

    Article  CAS  Google Scholar 

  53. Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS. Crystallization and microstructure of poly(l-lactide-co-meso-lactide) copolymers. Macromolecules. 1998;31:2593–9.

    Article  CAS  Google Scholar 

  54. Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys. 1996;197:3483–99.

    Article  CAS  Google Scholar 

  55. Di Lorenzo ML, Cocca M, Malinconico M. Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta. 2011;522:110–7.

    Article  Google Scholar 

  56. Cocca M, Di Lorenzo ML, Malinconico M, Frezza V. Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur Polym J. 2011;47:1073–80.

    Article  CAS  Google Scholar 

  57. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.

    Article  CAS  Google Scholar 

  58. Baratian S, Hall ES, Lin JS, Xu R, Runt J. Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-d-lactide)s. Macromolecules. 2001;34:4857–64.

    Article  CAS  Google Scholar 

  59. Abe H, Harigaya M, Kikkawa Y, Tsuge T, Doi Y. Crystal growth and solid-state structure of poly(lactide) stereocopolymers. Biomacromolecules. 2005;6:457–67.

    Article  CAS  Google Scholar 

  60. Pan P, Liang Z, Zhu B, Dong T, Inoue Y. Blending effects on polymorphic crystallization of poly(l-lactide). Macromolecules. 2009;42:3374–80.

    Article  CAS  Google Scholar 

  61. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules. 2008;41:4296–304.

    Article  CAS  Google Scholar 

  62. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A. 1962;66:13–28.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 30870633, 31000427) and the Fundamental Research Funds for the Central Universities (No. DUT12JB09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, P., Chen, G., Wei, Z. et al. Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. J Therm Anal Calorim 111, 1507–1514 (2013). https://doi.org/10.1007/s10973-012-2502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2502-4

Keywords

Navigation