Skip to main content
Log in

Thermodynamic studies on Pr2TeO6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard Gibbs energy of formation of Pr2TeO6 \( (\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)) \) was derived from its vapour pressure in the temperature range of 1,400–1,480 K. The vapour pressure of TeO2 (g) was measured by employing a thermogravimetry-based transpiration method. The temperature dependence of the vapour pressure of TeO2 over the mixture Pr2TeO6 (s) + Pr2O3 (s) generated by the incongruent vapourization reaction, Pr2TeO6 (s) = Pr2O3 (s) + TeO2 (g) + ½ O2 (g) could be represented as: \( { \log }\left\{ {{{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} \mathord{\left/ {\vphantom {{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} {{\text{Pa}} \pm 0.0 4}}} \right. \kern-\nulldelimiterspace} {{\text{Pa}} \pm 0.0 4}}} \right\} = 19. 12- 27132\; \left({\rm{{{\text{K}}}}/T} \right) \). The \( \Updelta_{\text{f}} G^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) \) could be represented by the relation \( \left\{ {{{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} \mathord{\left/ {\vphantom {{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} \pm 5.0} \right\} = - 2 4 1 5. 1+ 0. 5 7 9 3\;\left(T/{\text{K}}\right) .\) Enthalpy increments of Pr2TeO6 were measured by drop calorimetry in the temperature range of 573–1,273 K and heat capacity, entropy and Gibbs energy functions were derived. The \( \Updelta_{\text{f}} H_{{298\;{\text{K}}}}^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) \) was found to be \( {{ - 2, 40 7. 8 \pm 2.0} \mathord{\left/ {\vphantom {{ - 2, 40 7. 8 \pm 2.0} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haines HR, Potter PE, Rand MH. Some phase diagram studies of systems with fission product elements for fast reactor fuels. In: Proceedings of the International Symposium on thermodynamics of nuclear materials, vol II, Julich, 1979. Vienna: IAEA; 1980.

  2. Kleykamp H. Chemical states of the fission products in oxide fuels. J Nucl Mater. 1985;131:221–46.

    Article  CAS  Google Scholar 

  3. Cordfunke EHP, Konings RJM. Chemical interaction in water cooled nuclear fuel: a thermochemical approach. J Nucl Mater. 1988;152:301–9.

    Article  Google Scholar 

  4. Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat-capacity standard reference material – synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand 1982;87(2):159–63.

    Google Scholar 

  5. Babu R, Kandan R, Jena H, Govindan Kutty KV, Nagarajan K. Calorimetric investigations on cubic BaTiO3 and Ba0.9Nd0.1TiO3 systems. J Alloys Compd. 2010;506:565–8.

    Article  CAS  Google Scholar 

  6. Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia. 1990;27(1):3–10.

    Article  Google Scholar 

  7. Balakrishnan S, Pankajavalli R, Anthonysamy S, Ananthasivan K. Thermodynamic stability of Sm2TeO6. Thermochim Acta. 2008;467:80–5.

    Article  CAS  Google Scholar 

  8. Pankajavalli R, Mallika C, Sreedharan OM, Raghunathan VS, Antony Premkumar P, Nagaraja KS. Determination of vapour pressure and standard enthalpies of sublimation and vapourisation of N,N′-ethylenebis (2,4-pentanedion-iminoato) nickel(II) by a TG-based transpiration method. Chem Eng Sci. 2002;57:3603–10.

    Article  CAS  Google Scholar 

  9. Pankajavalli R, Jain A, Anthonysamy S, Ananthasivan K, Rao PRV. Vapour pressure and standard enthalpy of sublimation of alkali–metal fluoroborates. Thermochim Acta. 2007;452:1–6.

    Article  CAS  Google Scholar 

  10. Muenow DW, Hastie JW, Hauge R, Bautista R, Margrave JL. Vaporization, thermodynamics and structures of species in the tellurium + oxygen system. Trans Faraday Soc. 1969;65:3210–20.

    Article  CAS  Google Scholar 

  11. Knacke O, Kubaschewski O, Hesselmann K. Thermochemical properties of inorganic substances. 2nd ed. Germany: Springer-Verlag; 1991.

    Google Scholar 

  12. Aggarwal R, Singh Z. Enthalpy increments of Ba2Te3O8(s) and Ba3Te2O9(s) compounds. J Alloys Compd. 2006;414:230–4.

    Article  Google Scholar 

  13. Pankajavalli R, Jain A, Babu R, Ananthasivan K, Anthonysamy S, Ganesan V. Thermodynamic characterization of lanthanum tellurate. J Nucl Mater. 2010;397:116–21.

    Article  CAS  Google Scholar 

  14. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK. Selected values of the thermodynamic properties of elements. Metals Park, OH: American Society for Metals; 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anthonysamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankajavalli, R., Jain, A., Babu, R. et al. Thermodynamic studies on Pr2TeO6 . J Therm Anal Calorim 111, 1609–1614 (2013). https://doi.org/10.1007/s10973-012-2461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2461-9

Keywords

Navigation