Application of PCM thermal energy storage system to reduce building energy consumption

An Erratum to this article was published on 06 April 2012


The building sector is known to make a large contribution to total energy consumption and CO2 emissions. Phase change materials (PCMs) have been considered for thermal energy storage (TES) in buildings. They can balance out the discrepancies between energy demand and energy supply, which are temporally out of phase. However, traditional PCMs need special latent storage devices or containers to encapsulate the PCM, in order to store and release the latent heat of the PCM. The proper design of TES systems using a PCM requires quantitative information and knowledge about the heat transfer and phase change processes in the PCM. In Korea, radiant floor heating systems, which have traditionally been used in residential buildings, consume approximately 55% of the total residential building energy consumption in heating. This article reviews the development of available latent heat thermal energy storage technologies and discusses PCM application methods for residential building using radiant floor heating systems with the goal of reducing energy consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build. 2008;40:394–8.

    Article  Google Scholar 

  2. 2.

    Ardente F, Beccali M, Cellura M, Mistretta M. Building energy performance: a LCA case study of kenaf-fibres insulation board. Energy Build. 2008;40:1–10.

    Article  Google Scholar 

  3. 3.

    Zabalza Bribián I, Aranda Usón A, Scarpellini S. Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ. 2009;44:2510–20.

    Article  Google Scholar 

  4. 4.

    Levermore GJ. A review of the IPCC assessment report four, part 1: the IPCC process and greenhouse gas emission trends from buildings worldwide. Build Serv Eng Res Technol. 2008;29:349–61.

    Article  Google Scholar 

  5. 5.

    Kwok AG, Rajkovich NB. Addressing climate change in comfort standards. Build Environ. 2010;45:18–22.

    Article  Google Scholar 

  6. 6.

    Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  7. 7.

    Alkan C, Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy. 2008;82:118–24.

    Article  CAS  Google Scholar 

  8. 8.

    Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11:1913–65.

    Article  CAS  Google Scholar 

  9. 9.

    Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93:136–42.

    Article  CAS  Google Scholar 

  10. 10.

    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  11. 11.

    Tae S, Shin S. Current work and future trends for sustainable buildings in South Korea. Renew Sustain Energy Rev. 2009;13:1910–21.

    Article  Google Scholar 

  12. 12.

    Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev. 2008;12:2438–58.

    Article  CAS  Google Scholar 

  13. 13.

    Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy. 1983;30:313–32.

    Article  CAS  Google Scholar 

  14. 14.

    Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev. 2007;11:1146–66.

    Article  Google Scholar 

  15. 15.

    Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag. 2004;45:263–75.

    Article  CAS  Google Scholar 

  16. 16.

    Hong K, Park S. Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Mater Chem Phys. 1999;58:128–31.

    Article  CAS  Google Scholar 

  17. 17.

    Nelson G. Application of microencapsulation in textiles. Int J Pharm. 2002;242:55–62.

    Article  CAS  Google Scholar 

  18. 18.

    Zhang XX, Fan YF, Tao XM, Yick KL. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys. 2004;88:300–7.

    Article  CAS  Google Scholar 

  19. 19.

    Lan X, Tan Z, Zou G, Sun L, Zhang T. Microencapsulation of n-eicosane as energy storage material. Chin J Chem. 2004;22:411–4.

    Article  CAS  Google Scholar 

  20. 20.

    Li W, Zhang X, Wang X, Niu J. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Mater Chem Phys. 2007;106:437–42.

    Article  CAS  Google Scholar 

  21. 21.

    Wang X, Niu J, van Paassen AHC. Raising evaporative cooling potentials using combined cooled ceiling and MPCM slurry storage. Energy Build. 2008;40:1691–8.

    Article  Google Scholar 

  22. 22.

    Diaconu BM. Transient thermal response of a PCS heat storage system. Energy Build. 2009;41:212–9.

    Article  Google Scholar 

  23. 23.

    Alkan C, Sarı A, Karaipekli A, Uzun O. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93:143–7.

    Article  CAS  Google Scholar 

  24. 24.

    Lai C, Chen RH, Lin C. Heat transfer and thermal storage behavior of gypsum boards incorporating micro-encapsulated PCM. Energy Build. 2010;42:1259–66.

    Article  Google Scholar 

  25. 25.

    Veerappan M, Kalaiselvam S, Iniyan S, Goic R. Phase change characteristic study of spherical PCMs in solar energy storage. Sol Energy. 2009;83:1245–52.

    Article  CAS  Google Scholar 

  26. 26.

    Bayés-García L, Ventolà L, Cordobilla R, Benages R, Calvet T, Cuevas-Diarte MA. Phase change materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol Energy Mater Sol Cells. 2010;94:1235–40.

    Article  Google Scholar 

  27. 27.

    Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM thermal-energy storage system. Appl Energy. 2003;74:195–202.

    Article  CAS  Google Scholar 

  28. 28.

    Zou GL, Tan ZC, Lan XZ, Sun LX, Zhang T. Preparation and characterization of microencapsulated hexadecane used for thermal energy storage. Chin Chem Lett. 2004;15:729–32.

    CAS  Google Scholar 

  29. 29.

    Liang C, Lingling X, Hongbo S, Zhibin Z. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers Manag. 2009;50:723–9.

    Article  Google Scholar 

  30. 30.

    Kim EY, Kim HD. Preparation and properties of microencapsulated octadecane with waterborne polyurethane. J Appl Polym Sci. 2005;96:1596–604.

    Article  CAS  Google Scholar 

  31. 31.

    Shin Y, Yoo D, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules. J Appl Polym Sci. 2005;97:910–915.

    Google Scholar 

  32. 32.

    Su J, Wang L, Ren L. Preparation and characterization of double-MF shell microPCMs used in building materials. J Appl Polym Sci. 2005;97:1755–62.

    Article  CAS  Google Scholar 

  33. 33.

    Zhang X, Fan Y, Tao X, Yick K. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interface Sci. 2005;281:299–306.

    Article  CAS  Google Scholar 

  34. 34.

    Zhang P, Hu Y, Song L, Ni J, Xing W, Wang J. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol Energy Mater Sol Cells. 2010;94:360–5.

    Article  CAS  Google Scholar 

  35. 35.

    Xu X, Zhang Y, Lin K, Di H, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build. 2005;37:1084–91.

    Article  Google Scholar 

  36. 36.

    Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P. Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build. 2005;37:215–20.

    Article  Google Scholar 

  37. 37.

    Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006;38:1262–9.

    Article  Google Scholar 

  38. 38.

    Cheng W, Zhang R, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mater Sol Cells. 2010;94:1636–42.

    Article  CAS  Google Scholar 

  39. 39.

    Alkan C, Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manag. 2011;52:687–92.

    Article  CAS  Google Scholar 

  40. 40.

    Koschenz M, Lehmann B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 2004;36:567–78.

    Article  Google Scholar 

  41. 41.

    Shilei L, Neng Z, Guohui F. Impact of phase change wall room on indoor thermal environment in winter. Energy Build. 2006;38:18–24.

    Article  Google Scholar 

  42. 42.

    De Grassi M, Carbonari A, Palomba G. A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls. Build Environ. 2006;41:448–85.

    Article  Google Scholar 

  43. 43.

    Carbonari A, De Grassi M, Di Perna C, Principi P. Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls. Energy Build. 2006;38:472–83.

    Article  Google Scholar 

  44. 44.

    Darkwa K, O’Callaghan PW. Simulation of phase change drywalls in a passive solar building. Appl Therm Eng. 2006;26:853–8.

    Article  Google Scholar 

  45. 45.

    Huang MJ, Eames PC, Hewitt NJ. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Sol Energy Mater Sol Cells. 2006;90:1951–60.

    Article  CAS  Google Scholar 

  46. 46.

    Zhou G, Zhang Y, Wang X, Lin K, Xiao W. An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating. Sol Energy. 2007;81:1351–60.

    Article  Google Scholar 

  47. 47.

    Castellón C, Medrano M, Roca J, Cabeza LF, Navarro ME, Fernández AI, Lázaro A, Zalba B. Effect of microencapsulated phase change material in sandwich panels. Renew Energy. 2010;35:2370–4.

    Article  Google Scholar 

  48. 48.

    Ahmad M, Bontemps A, Sallée H, Quenard D. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy Build. 2006;38:673–81.

    Article  Google Scholar 

  49. 49.

    Darkwa J, Zhou T. Enhanced laminated composite phase change material for energy storage. Energy Convers Manag. 2011;52:810–5.

    Article  CAS  Google Scholar 

  50. 50.

    Kuznik F, Virgone J, Roux J. Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build. 2008;40:148–56.

    Article  Google Scholar 

  51. 51.

    Halawa E, Bruno F, Saman W. Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Convers Manag. 2005;46:2592–604.

    Article  CAS  Google Scholar 

  52. 52.

    Weinläder H, Beck A, Fricke J. PCM-facade-panel for daylighting and room heating. Sol Energy. 2005;78:177–86.

    Article  Google Scholar 

  53. 53.

    Cabeza LF, Castellón C, Nogués M, Medrano M, Leppers R, Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007;39:113–9.

    Article  Google Scholar 

  54. 54.

    Xiao W, Wang X, Zhang Y. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. Appl Energy. 2009;86:2013–8.

    Article  CAS  Google Scholar 

  55. 55.

    Zhou G, Yang Y, Wang X, Zhou S. Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation. Appl Energy. 2009;86:52–9.

    Article  CAS  Google Scholar 

  56. 56.

    Park BI, Seok HT, Kim K-W. The historical changes of ONDOL. Korean J Air Cond Refrig Eng. 1995;24:613–27.

    Google Scholar 

  57. 57.

    Song G. Buttock responses to contact with finishing materials over the ONDOL floor heating system in Korea. Energy Build. 2005;37:65–75.

    Article  Google Scholar 

  58. 58.

    Song G. The status of the automatic control systems for ONDOL. Korean J Air Cond Refrig Eng. 1996;25:323–33.

    Google Scholar 

  59. 59.

    Kim S, Kim H. Thermal stability and viscoelastic properties of MF/PVAc hybrid resins on the adhesion for engineered flooring in under heating system; ONDOL. Thermochim Acta. 2006;444:134–40.

    Article  CAS  Google Scholar 

Download references


This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MEST) (No. 2011-0016996).

Author information



Corresponding author

Correspondence to Sumin Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeon, J., Lee, JH., Seo, J. et al. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim 111, 279–288 (2013).

Download citation


  • Thermal energy storage
  • Phase change materials (PCM)
  • Radiant floor heating system
  • Building energy consumption