Skip to main content
Log in

Thermal analysis of spider silk inspired di-block copolymers in the glass transition region by TMDSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We used advanced thermal analysis methods to characterize a new family of A-B di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk. Using temperature modulated differential scanning calorimetry with a thermal cycling method and thermogravimetry, we captured the effect of bound water acting as a plasticizer for spider silk-like biopolymer films which had been cast from water solution and then dried. A low glass transition because of bound water removal was observed in the first heating cycle, after which, a shift of glass transition was observed in A-block film due to crystallization and annealing, and in BA film due to annealing. No shift of glass transition after bound water removal was observed in B-block film. The reversing heat capacities, C p, for temperatures below and above the glass transition were measured and compared to the calculated values. The solid state heat capacity was modeled below T g, based on the vibrational motions of the constituent poly(amino acid)s, heat capacities of which are known from the ATHAS Data Bank. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this model can serve as a standard method to predict the solid state C p for other biologically inspired block-copolymers. We also calculated the liquid state heat capacities of the 100% amorphous biopolymer at T g, and this predicted value can be use to determined the crystallinity of protein-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  CAS  Google Scholar 

  2. Kluge JA, Rabotyagova U, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol. 2008;26(5):244–51.

    Article  CAS  Google Scholar 

  3. Krishnaji ST, Huang WW, Rabotyagova O, Kharlampieva E, Choi I, Tsukruk VV, Naik R, Cebe P, Kaplan DL. Thin film assembly of spider silk-like block copolymers. Langmuir. 2011;27(3):1000–8.

    Article  CAS  Google Scholar 

  4. McGrath K, Kaplan D. Protein-based materials. Boston: Birkhäuser; 1997.

    Google Scholar 

  5. Hayashi CY, Shipley NH, Lewis RV. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol. 1999;24(2–3):271–5.

    Article  CAS  Google Scholar 

  6. Hayashi CY, Lewis RV. Molecular architecture and evolution of a modular spider silk protein gene. Science. 2000;287(5457):1477–9.

    Article  CAS  Google Scholar 

  7. Lee KY, Ha WS. DSC studies on bound water in silk fibroin/S-carboxymethyl kerateine blend films. Polymer. 1999;40(14):4131–4.

    Article  CAS  Google Scholar 

  8. Hu X, Kaplan D, Cebe P. Dynamic protein-water relationships during beta-sheet formation. Macromolecules. 2008;41(11):3939–48.

    Article  CAS  Google Scholar 

  9. Hu X, Lu Q, Kaplan DL, Cebe P. Microphase separation controlled beta-sheet crystallization kinetics in fibrous proteins. Macromolecules. 2009;42(6):2079–87.

    Article  CAS  Google Scholar 

  10. Pyda M. Conformational contribution to the heat capacity of the starch and water system. J Polym Sci Part B. 2001;39(23):3038–54.

    Article  CAS  Google Scholar 

  11. Pyda M, Hu X, Cebe P. Heat capacity of silk fibroin based on the vibrational motion of poly(amino acid)s in the presence and absence of water. Macromolecules. 2008;41(13):4786–93.

    Article  CAS  Google Scholar 

  12. Pyda M. Conformational heat capacity of interacting systems of polymer and water. Macromolecules. 2002;35(10):4009–16.

    Article  CAS  Google Scholar 

  13. Hu X, Kaplan D, Cebe P. Effect of water on the thermal properties of silk fibroin. Thermochim Acta. 2007;461(1–2):137–44.

    Article  CAS  Google Scholar 

  14. Hu X, Kaplan D, Cebe P. Thermal analysis of protein-metallic ion systems. J Therm Anal Calorim. 2009;96(3):827–34.

    Article  CAS  Google Scholar 

  15. Huang WW, Krishnaji S, Hu X, Kaplan D, Cebe P. Heat capacity of spider silk-like block copolymers. Macromolecules. 2011;44(13):5299–309.

    Article  CAS  Google Scholar 

  16. Pyda M The advanced thermal analysis system (ATHAS) data bank. http://athas.prz.rzeszow.pl/Default.aspx?op=db. Accessed 02 2011.

  17. Wunderlich B. Study of the change in specific heat of monomeric and polymeric glasses during the glass. J Phys Chem. 1960;64(8):1052–6.

    Article  CAS  Google Scholar 

  18. Wunderlich B. Thermal analysis of polymeric materials. Berlin: Springer; 2005.

    Google Scholar 

  19. Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006;39(18):6161–70.

    Article  CAS  Google Scholar 

  20. Huang WW, Edenzon K, Fernandez L, Razmpour S, Woodburn J, Cebe P. Nanocomposites of poly(vinylidene fluoride) with multiwalled carbon nanotubes. J Appl Polym Sci. 2010;115(6):3238–48.

    Article  CAS  Google Scholar 

  21. Buckley J, Cebe P, Cherdack D, Crawford J, Ince BS, Jenkins M, Pan JJ, Reveley M, Washington N, Wolchover N. Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer. 2006;47(7):2411–22.

    Article  CAS  Google Scholar 

  22. Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ. Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol). Macromolecules. 1996;29(25):8137–43.

    Article  CAS  Google Scholar 

  23. Kim YS, Dong LM, Hickner MA, Glass TE, Webb V, McGrath JE. State of water in disulfonated poly(arylene ether sulfone) copolymers and a perfluorosulfonic acid copolymer (nafion) and its effect on physical and electrochemical properties. Macromolecules. 2003;36(17):6281–5.

    Article  CAS  Google Scholar 

  24. Motta A, Fambri L, Migliaresi C. Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol Chem Phys. 2002;203(10–11):1658–65.

    Article  CAS  Google Scholar 

  25. Randzio SL, Flis-Kabulska I, Grolier JPE. Reexamination of phase transformations in the starch-water system. Macromolecules. 2002;35(23):8852–9.

    Article  CAS  Google Scholar 

  26. Lu SX, Cebe P. Effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer. 1996;37(21):4857–63.

    Article  CAS  Google Scholar 

  27. Pyda M, Wunderlich B. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules. 2005;38(25):10472–9.

    Article  CAS  Google Scholar 

  28. Chen H, Hu X, Cebe P. Thermal properties and phase transitions in blends of nylon-6 with silk fibroin. J Therm Anal Calorim. 2008;93(1):201–6.

    Article  CAS  Google Scholar 

  29. Wunderlich B. The ATHAS database on heat-capacities of polymers. Pure Appl Chem. 1995;67(6):1019–26.

    Article  CAS  Google Scholar 

  30. Menczel J, Wunderlich B. Heat-capacity hysteresis of semi-crystalline macromolecular glasses. J Polym Sci Part C. 1981;19(5):261–4.

    CAS  Google Scholar 

  31. Warwicker JO. Comparative studies of fibroins. 2. Crystal structures of various fibroins. J Mol Biol. 1960;2(6):350–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided from the National Science Foundation, Division of Chemical, Bioengineering, Environmental, and Transport Systems, through CBET-0828028. The thermal analysis instrumentation study was supported by the MRI Program under DMR-0520655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Krishnaji, S., Kaplan, D. et al. Thermal analysis of spider silk inspired di-block copolymers in the glass transition region by TMDSC. J Therm Anal Calorim 109, 1193–1201 (2012). https://doi.org/10.1007/s10973-012-2283-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2283-9

Keywords

Navigation