Skip to main content
Log in

Non-isothermal crystallization behavior of Styrene butadiene rubber/high density polyethylene binary blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal and crystallization behavior of the blends are studied by differential scanning calorimetry and XRD. The presence of the amorphous component in the blend is found to influence the non-isothermal crystallization of HDPE. The addition of small quantities of SBR resulted in an increase in the rate of crystallization whereas nucleation is delayed. As compared to HDPE, larger crystallite size, a narrower size distribution, were observed in low SBR (~up to 30 wt%) content blends. The half time of crystallization also found to reduce as the SBR content in the blend increased. However, a lower degree of crystallinity was observed in these blends. The results thus show that incorporation of SBR in HDPE, while accelerating the rate of crystallization, lower the degree of crystallization. The reduction in the overall crystallization rate at high-SBR content is attributed to a decrease in the growth rate in the later stages of crystallization. It is observed that in dynamically cross-linked blends, the presence of crosslinked SBR that can acts as heterogeneous nuclei facilitated the nucleation of HDPE. However, the crystal growth may be impeded. As a result the overall crystallinity of the crosslinked blends found to decrease. From XRD profiles it had seen that addition of SBR and dynamic crosslinking does not exert an effect on the crystalline structure of HDPE. The dynamic vulcanization of SBR/HDPE blends enhanced the process of crystallization of HDPE phase. These conclusions are supported by the thermal characterization (DSC) results also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sreeja R, Predeep P. Electro-optic materials from co-polymeric elastomer-acrylonitrile butadiene rubber (NBR). Polymer. 2006;47:617–22.

    Article  CAS  Google Scholar 

  2. Yang J, McCoy BJ, Madras G. Kinetics of nonisothermal polymer crystallization. J Phys Chem B. 2002;109(39):18550–7.

    Article  Google Scholar 

  3. Liu YJ, Guo W, Su Z, Li B, Wu C. Non-isothermal crystallization of recycled poly(ethyleneterephthalate)/poly (ethylene octene) blends. J Macro Mol Sci Part B. 2009;48(2):414–29.

    Article  CAS  Google Scholar 

  4. Jayasree TK, Predeep P. Thermal conductivity and Thermal diffusivity of Thermoplastic elastomeric blends of SBR/HDPE; Effect of blend ratio and dynamic crosslinking. Trends Appl Sci Res. 2006;1(3):278–91.

    Article  CAS  Google Scholar 

  5. Choudhury NR, Chaki TK, Bhowmick AK. Thermal characterization of thermoplastic elastomeric natural rubber-polypropylene blends. Thermochim Acta. 1991;176(25):149–61.

    Article  CAS  Google Scholar 

  6. Sreeja R, Quamara JK, Predeep P. Development of transparent flexibleconducting thin films by in- situ dispersion, polymerization of pyrrole in prevulcanized NR latex. Mater Manufact Proc. 2007;22(1):561–7.

    Google Scholar 

  7. Ou C-F, Chao M-S, Huang S-L. The crystallization behaviors of PBT blended with co[poly(butylene terephthalate-p-oxybenzoate)] copolyesters. Eur Polym J. 2000;36(12):2665–70.

    Article  CAS  Google Scholar 

  8. Seki M, Yamauchi S, Matsushita Y. Miscibility and crystallisation kinetics for the blend of iPP/ethylene-propylene random copolymer. J Phys Chem Sol. 1999;60(8/9):1333–6.

    Article  CAS  Google Scholar 

  9. Ma G-Q, Sun H, Li J-Q, Zhao Y-H, Sheng J, Yu M (2008) Confined crystallization in polymer blends: DSC studies of the behavior and kinetics of isothermal crystallization of PP in poly(cis-butadiene) rubber blends. J Macro Mol Sci Part B. 2008; 47(5): 874–90.

    Google Scholar 

  10. Yang J, McCoy BJ, Madras G. A distribution kinetics approach for crystallization of polymer blends. J Phys Chem B. 2006;110(31):15198–204.

    Article  CAS  Google Scholar 

  11. George S, Varughese KT, Thomas S. Thermal and crystallization behavior of isotactic polypropylene/nitrile rubber blends. Polymer. 2000;41(14):5485–503.

    Article  CAS  Google Scholar 

  12. Pratap A, Sharma K. Applications of some thermo-analytical techniques to glasses and polymers. J Thermal Anal Calorim. 2011;106(1):47–52.

    Article  Google Scholar 

  13. Kishore K, Vasanthakumari R. Crystallization behaviour of polyethylene and i-polybutene-1 blends. Polymer. 1986;27(3):337–43.

    Article  CAS  Google Scholar 

  14. Huang H, Gu L, Ozaki Y. Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol). Polymer. 2006; 47: 3935–45.

    Google Scholar 

  15. Maria LauraDiLorenzo, Cimmino S, Silvestre C. Nonisothermal crystallization of isotactic polypropylene blended with poly(α-pinene). 2. Growth rates. J Macro Mol. 2000;3(10):3828–32.

    Google Scholar 

  16. Suri S, Bamzai KK, Singh V. Growth and thermal kinetics of pure and cadmium doped barium phosphate single crystal. J Thermal Anal Calorim. 2011; 105(1): 229–38.

    Google Scholar 

  17. Ziabicki A, Sakjiewitz A. Crystallisation of polymers in variable external conditions.III: experimental determination of kinetic characteristics. Colloid Polym Sci. 1998;276(8):680–9.

    Article  CAS  Google Scholar 

  18. Wang Y, Shen H, Li G, Mai K. Crystallization and melting behavior of PP/CaCO3 nanocomposites during thermo-oxidative degradation. J Thermal Anal Calorim. 2010;100(3):999–1008.

    Article  CAS  Google Scholar 

  19. Li G, Wang K, Li S, Shi Y. Isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. J Macro Mol Sci Part B. 2007; 46: 569–80.

    Google Scholar 

  20. Majhi K, Varma KBR. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Thermal Anal Calorim. 2009;98(3):731–6.

    Article  CAS  Google Scholar 

  21. Li Z, Wang Y-Z, Yang K-K, Wang X-L, Chen S-C, Li J. Effect of PEG on the crystallization of PPDO/PEG blends. Euro Polym J. 2005;41(6):1243–50.

    Article  Google Scholar 

  22. Cimmino S, Di E, Martuscelli E, Silvestre C. Syndiotactic polystyrene-based blends: crystallization and phase structure. Polymer. 1993;34(13):2799–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Predeep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasree, T.K., Predeep, P. Non-isothermal crystallization behavior of Styrene butadiene rubber/high density polyethylene binary blends. J Therm Anal Calorim 108, 1151–1160 (2012). https://doi.org/10.1007/s10973-012-2257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2257-y

Keywords

Navigation