Skip to main content
Log in

Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal titration calorimetry (ITC) was used to characterize inclusion complex formation of natural cyclodextrins (α- and β-cyclodextrin) with three drugs ((+)brompheniramine, (±)brompheniramine, cyclopentolate) in aqueous solutions. ITC measurements were carried out at 298.15 K on a Microcal OMEGA ultrasensitive titration calorimeter (MicroCal Inc.). The experimental data were analyzed on the basis of the model of a single set of identical sites (ITC tutorial guide). β-CD forms inclusion complexes of stoichiometry 1:1 with the all investigated drugs. In turn, smaller molecule of α-CD forms inclusion complexes of two different stoichiometry: with bigger molecules ((+)brompheniramine and (±)brompheniramine) of a stoichiometry 2:1 and with smaller molecules (cyclopentolate) of a stoichiometry 1:2. Based on the experimental values of equilibrium constant (K) and enthalpy of complex formation (ΔH), the Gibbs energy of complex formation (ΔG), and the entropy of complex formation (ΔS), have been calculated, for all the investigated systems. Obtained results showed that complex formation of β-CD (bigger molecule with wider cavity compared to β-CD) with both (+)brompheniramine, (±)brompheniramine, and cyclopentolate is enthalpy driven while complexes of α-CD with the all investigated drugs are enthalpy-entropy stabilized. This indicated that the difference in the cavity dimensions is reflecting in different driving forces of complex formation and binding modes what resulted in different stoichiometry of the obtained inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh R, Bharti N, Madan J, Hiremath SN. Characterization of cyclodextrin inclusion complexes—a review. J Pharm Sci Tech. 2010;2:171–83.

    CAS  Google Scholar 

  2. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–917.

    Article  CAS  Google Scholar 

  3. Del Valle EMM. Cyclodextrins and their uses: a review. Proc Biochem. 2004;39:1033–46.

    Article  Google Scholar 

  4. Loftssan T, Brewster ME. Pharmaceutical application of cyclodextrins 1. Solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  Google Scholar 

  5. Rajewski RA, Stella VJ. Pharmaceutical application of cyclodextrins 2. In vivo. Drug delivery. J Pharm Sci. 1996;85:1142–69.

    Article  CAS  Google Scholar 

  6. Duchene D, Vaution C, Glomot F. Cyclodextrin, their value in pharmaceutical technology. Drug Dev Ind Pharm. 1988;12:2193–215.

    Article  Google Scholar 

  7. Marzouqi AHA, Shehatta J, Jobe B, Dowaidar A. Phase solubility and inclusion complex of itraconazole with ß-cyclodextrin using supercritical carbon dioxide. J Pharm Sci. 2006;95:292–304.

    Article  Google Scholar 

  8. Tayade PT, Vavia PR. Inclusion complexes of ketoprofen with β-cyclodextrins: oral pharmacokinetics of Ketoprofen in human. Indian J Pharm Sci. 2006;68:164–70.

    Article  CAS  Google Scholar 

  9. Sinha VR, Anitha R, Ghosh S, Nanda A, Kumria R. Complexation of celecoxib with ß-cyclodextrin: characterization of the interaction in solution and in solid state. J Pharm Sci. 2005;94:676–87.

    Article  CAS  Google Scholar 

  10. Tomren MA, Masson M, Loftsson T, Tonnesen HH. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm. 2007;338:27–34.

    Article  CAS  Google Scholar 

  11. Uekama K, Hirayama F, Otagiri M, Yamasaki M. Inclusion complexations of steroid hormones with cyclodextrins in water and in solid phase. Int J Pharm. 1982;10:1–15.

    Article  CAS  Google Scholar 

  12. Beni S, Szakacs Z, Csernak O, Barcza L, Noszal B. Cyclodextrin/Imatinib complexation: binding mode and charge dependent stabilities. Eur J Pharm Sci. 2007;30:167–74.

    Article  CAS  Google Scholar 

  13. Muller BK, Ritter H. Scrutinizing ITC-study on the formation of inclusion complexes of nonionic surfactant triton X-100 and cyclodextrins. J Incl Phenom Macrocycl Chem. 2011. doi 10.1007/s10847-011-9955-0.

  14. Stojanov M, Wimmer R, Larsen KL. Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties. J Phar Sci. 2011;100:3177–85.

    Article  CAS  Google Scholar 

  15. Bouchemal K. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov Today. 2008;13:960–72.

    Article  CAS  Google Scholar 

  16. Castronuovo G, Niccoli M. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with propranolol in aqueous solution at 298 K. Bioorg Med Chem. 2006;14:3883–7.

    Article  CAS  Google Scholar 

  17. Denadai AM, Teixeira KI, Santoro MM, Pimenta AM, Cortes ME, Sinisterra RD. Supramolecular self-assembly of beta-cyclodextrin: an effective carrier of the antimicrobial agent chlorhexidine. Carbohyd Res. 2007;342:2286–96.

    Article  CAS  Google Scholar 

  18. Illapakurthy AC, Wyandt CM, Stodghill SP. Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions. Eur J Pharm Biopharm. 2005;59:325–32.

    Article  CAS  Google Scholar 

  19. Nilsson M, Valente AJ, Olofsson G, Soderman O, Bonini M. Thermodynamic and kinetic characterization of host-guest association between bolaform surfactants and alpha- and beta-cyclodextrins. J Phys Chem B. 2009;112:11310–6.

    Article  Google Scholar 

  20. Sun DZ, Li L, Qiu XM, Liu F, Yin BL. Isothermal titration calorimetry and 1H NMR studies on host-guest interaction of paeonol and two of its isomers with beta-cyclodextrin. Int J Pharm. 2006;316:7–13.

    Article  CAS  Google Scholar 

  21. Roy AK, Guillory JK. The effect of cyclodextrins on the aqueous stability of cyclopentolate hydrochloride. Int J Pharm. 1996;138:37–43.

    Article  CAS  Google Scholar 

  22. Chankvetadze B, Burjanadze N, Maynard DM, Bergander K, Bergenthal D, Blaschke G. Comparative enantioseparations with native β-cyclodextrin and heptakis-(2–0-methyl-3,6-di-o-sulfo)-β-cyclodextrin in capillary electrophoresis. Electrophoresis. 2002;23:3027–34.

    Article  CAS  Google Scholar 

  23. Kwaterczak A, Duszczyk K, Bielejewska A. Comparison of chiral separation of basic drugs in capillary electrophoresis and liquid chromatography using neutral and negatively charged cyclodextrins. Anal Chima Acta. 2009;645:98–104.

    Article  CAS  Google Scholar 

  24. Asztemborska M, Bielejewska A, Duszczyk K, Sybilska D. Comparative study on camphor enantiomers behavior under the conditions of gas-liquid chromatography and reversed-phase high-performance liquid chromatography systems modified with α- and β-cyclodextrin. J Chrom A. 2000;874:73–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-14-102/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Gierycz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wszelaka-Rylik, M., Gierycz, P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim 111, 2029–2035 (2013). https://doi.org/10.1007/s10973-012-2251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2251-4

Keywords

Navigation