Skip to main content

Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TG)

Abstract

The boiling point and volatility are important properties for fuels, as it is for quality control of the industry of petroleum diesel and biofuels. In addition, through the volatility is possible to predict properties, such as vapor pressure, density, latent heat, heat of vaporization, viscosity, and surface tension of biodiesel. From thermogravimetry analysis it is possible to find the kinetic parameters (activation energy, pre-exponential factor, and reaction order), of thermally simulated processes, like volatilization. With the kinetic parameters, it is possible to obtain the thermodynamic parameters by mathematical formula. For the kinetic parameters, the minor values of activation energy were found for mineral diesel (E = 49.38 kJ mol−1), followed by babassu biodiesel (E = 76.37 kJ mol−1), and palm biodiesel (E = 87.00 kJ mol−1). Between the two biofuels studied, the babassu biodiesel has the higher minor value of activation energy. The thermodynamics parameters of babassu biodiesel are, ΔS = −129.12 J mol−1 K−1, ΔH = +80.38 kJ mol−1 and ΔG = +142.74 kJ mol−1. For palm biodiesel ΔS = −119.26 J mol−1 K−1, ΔH = + 90.53 kJ mol−1 and ΔG = +141.21 kJ mol−1, and for diesel ΔS = −131.3 J mol−1 K−1, ΔH = +53.29 kJ mol−1 and ΔG = +115.13 kJ mol−1. The kinetic thermal analysis shows that all E, ΔH, and ΔG values are positive and ΔS values are negative, consequently, all thermodynamic parameters indicate non-spontaneous processes of volatilization for all the fuels studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chang YZD, Gerpen VHJ, Lee I, Johnson AL, Hammod GE, Marley JS. Fuel properties and emissions of soybean oil esters as diesel fuel. J Am Oil Chem Soc. 1996;73:1549–55.

    Article  CAS  Google Scholar 

  2. 2.

    Sheenan J, Duffielde J, Graboski M, Shapouri H. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. National Renewable Energy Laboratory for U.S. Department of Energy’s Office of Fuels Development and U.S. Department of Agriculture’s Office of Energy. 1998;4:286.

  3. 3.

    Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag. 2001;42:1357–78.

    Article  CAS  Google Scholar 

  4. 4.

    Metzger OJ. Organic reactions with oils and fats as renewable raw materials for the chemist industry. Chemosphere. 2001;43:83–7.

    Article  CAS  Google Scholar 

  5. 5.

    Yuan W, Hansen AC, Zhang Q. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel. 2005;84:943–50.

    Article  CAS  Google Scholar 

  6. 6.

    Wan Nik WB, Ani FN, Ani, Masjuki HH. Thermal stability evaluation of palm oil as energy transport media. Energy Convers Manag. 2005;46:2198–215.

  7. 7.

    Macedo FL, Candeia RA, Sales LLM, Dantas MB, Souza AG, Conceicao MM. Thermal characterization of oil and biodiesel from oiticica (Licania rigida Benth). J Therm Anal Calorim. 2011;106:531–4.

    Article  CAS  Google Scholar 

  8. 8.

    Santos NA, Tavares MLA, Rosenhaim R, Silva FC, Fernandes VJ, Santos IMG, Souza AG. Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. J Therm Anal Calorim. 2007;87:649–52.

    Article  CAS  Google Scholar 

  9. 9.

    Arora S, Bagoria R, Kumar M. Effect of alpha-tocopherol (vitamin E) on the thermal degradation behavior of edible oils. J Therm Anal Calorim. 2010;102:375–81.

    Article  CAS  Google Scholar 

  10. 10.

    Rodriguez RP, Sierens R, Verhelst S. Thermal and kinetic evaluation of biodiesel derived from soybean oil and higuereta oil. J Therm Anal Calorim. 2009;96:897–901.

    Article  CAS  Google Scholar 

  11. 11.

    Souza AG, Danta HJ, Silva MCD, Santos IMG, Fernandes VJ, Sinfronio FSM, Teixeira LSG, Novak C. Thermal and kinetic evaluation of cotton oil biodiesel. J Therm Anal Calorim. 2007;90:945–9.

    Article  CAS  Google Scholar 

  12. 12.

    Siddharth J, Sharma MP. Stability of biodiesel and its blends: a review. Renew Sustain Energy Rev. 2010;14:667–78.

    Article  Google Scholar 

  13. 13.

    De Robertis E, Moreira GF, Silva RA, Achete CA. Thermal behavior study of biodiesel standard reference materials. J Therm Anal Calorim. 2011;106:347–54.

    Article  CAS  Google Scholar 

  14. 14.

    Galvao LPFC, Santos AGD, Gondim AD, Barbosa MN, Araujo AS, Di Souza L, Junior, VJF. Comparative study of oxidative stability of sunflower and cotton biodiesel through P-DSC. J Therm Anal Calorim 2011;106:625–29.

    Google Scholar 

  15. 15.

    Freire LMS, Bicudo TC, Rosenhaim R, Sinfronio FSM, Botelho JR, Carvalho JR, Santos IMG, Fernandes VJ, Antoniosi NR, Souza AG. Thermal investigation of oil and biodiesel from Jatropha curcas L. Therm Anal Calorim. 2011;96:1029–33.

    Article  Google Scholar 

  16. 16.

    Candeia RA, Sinfronio FSM, Bicudo TC, Queiroz N, Barros AKD, Soledade LEB, Santos IMG, Souza AL, Souza AG. Influence of the storage on the thermo-oxidative stability of methyl and ethyl esters by PDSC. J Therm Anal Calorim. 2001;106:581–6.

    Article  Google Scholar 

  17. 17.

    Santos AGD, Araujo AS, Caldeira VPS, Junior VJF, Souza DS, Barros AK. Model-free kinetics applied to volatilization of Brazilian sunflower oil, and its respective biodiesel. Thermochim Acta. 2010;506:57–61.

    Article  CAS  Google Scholar 

  18. 18.

    Ozawa TA. New method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  19. 19.

    Tietze LF, Eicher T. Reactions and syntheses in the organic chemistry laboratory. Mill Valley: University Science; 1989. p. 2507–08.

  20. 20.

    Madhu NT, Radhakrishnan PK, Grunert M, Weinberger P, Linert W. Thermochim Acta. 2003;407:73–84.

    Article  CAS  Google Scholar 

  21. 21.

    Souza AG, Oliveira MM, Santos IM, Conceição MM, Nunes LM. J Therm Anal Calorim. 2002;67:359–63.

    Article  CAS  Google Scholar 

  22. 22.

    Graboski MS, Cormick RL. Combustion of fat and vegetable oil derived fuels in diesel engines. Program Energy Combust Sci. 1998;24:125–64.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. E. Oliveira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oliveira, L.E., Giordani, D.S., Paiva, E.M. et al. Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TG). J Therm Anal Calorim 111, 155–160 (2013). https://doi.org/10.1007/s10973-011-2163-8

Download citation

Keywords

  • Kinetic
  • Thermodynamic
  • Volatilization
  • Babassu biodiesel
  • Palm biodiesel