Skip to main content
Log in

Effects of hydroxyvalerate contents in thermal degradation kinetic of cellulose acetate propionate/poly(3-hydroxyalkanoates) blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal stability of polymers is an important parameter that determines the application as well as the processing conditions. The green polymers have shown low thermal stability, such as the polyhydroxyalkanoates (PHAs). The PHAs with different comonomers containing hydroxyvalerate (HV) were studied. It was seen that the green polymer showed a fast thermal degradation process. The addition of the HV comonomer modified this profile and the thermal degradation kinetic. The blend prepared between the PHAs and other polymers can modify the thermal degradation process of the green polymers. In the present study, blends of cellulose acetate propionate and PHAs were prepared, and the thermal degradation kinetics of these blends were evaluated. It was observed that the cellulose acetate propionate (CAP) phase in the blends modified the thermal degradation process and kinetic profile of the PHA phase. In the blends, the thermal stability of the PHAs was slightly modified because of CAP reducing the reactivity of the PHAs. On the other hand, the thermal stability of the CAP phase in the blends is not largely modified by the PHA phase. However, the hydroxyvalerate comonomer decreases the reactivity of the CAP phase at the start of thermal degradation of the same. The interaction between the phases promotes the synergetic interaction, which slightly improves the thermal stability of the two polymers blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.

    Article  CAS  Google Scholar 

  2. Baker AMM, Mead J. Thermoplastics. In: Harper CA, editor. Handbook of plastics, elastomers & composites. 4th ed. New York: McGraw-Hill; 2002. p. 1–18.

    Google Scholar 

  3. Kunioka M, Doi Y. Thermal degradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1990;23:1933–6.

    Article  CAS  Google Scholar 

  4. El-Shafee E, Saad GR, Fahmy SM. Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/Cellulose acetate butyrate blends. Eur Polym J. 2001;31:2091–104.

    Article  Google Scholar 

  5. Pospísil J, Horák Z, Krulis Z, Nespurek S, Kuroda S-I. Degradation and aging of polymer blends I. Thermal, mechanical and thermal degradation. Polym Degrad Stab. 1999;65:405–14.

    Article  Google Scholar 

  6. Ojumu TV, Yu J, Solomon BO. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol. 2004;3:18–24.

    CAS  Google Scholar 

  7. Lee MY, Lee TS, Park WH. Effect of side chains on the thermal degradation of poly(3-hydroxyalkanoates). Macromol Chem Phys. 2001;202(7):1257–61.

    Article  CAS  Google Scholar 

  8. Fraga A, Ruseckaite RA, Jiménez A. Thermal degradation and pyrolysis of mixtures based on poly(3-hydroxybutyrate-8%-3-hydroxyvalerate) and cellulose derivatives. Polym Test. 2005;24:526–34.

    Article  CAS  Google Scholar 

  9. Buchanan CM, Gedon SC, Pearcy BG, White AW, Wood MD. Cellulose ester-aliphatic polyester blends: the influence of diol length on blend miscibility. Macromolecules. 1993;26:5704–10.

    Article  CAS  Google Scholar 

  10. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D. Advanced in cellulose ester performance and application. Prog Polym Sci. 2001;26:1605–88.

    Article  CAS  Google Scholar 

  11. Amim Jr., J, Blachechen, LS, Petri, DFS. Effect of sorbitan-based surfactants on glass transition temperature of cellulose esters. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1796-y.

  12. Scandola M, Ceccorulli G, Pizzoli M. Miscibility of bacterial poly(3-hydroxybutyrate) with cellulose esters. Macromolecules. 1992;25:6441–6.

    Article  CAS  Google Scholar 

  13. Buchanan CM, Gedon SC, White AW, Wood MD. Cellulose acetate butyrate and poly(hydroxybutyrate-co-valerate) copolymer blends. Macromolecules. 1992;25:7373–81.

    Article  CAS  Google Scholar 

  14. Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. vol. 1: Principles and practice. Amsterdam: Elsevier Science; 1998.

    Google Scholar 

  15. Gongwer PE, Arisawa H, Brill TB. Kinetics and products from flash pyrolysis of cellulose acetate butyrate (CAB) at 460–600 °C. Combust Flame. 1997;109:370–81.

    Article  CAS  Google Scholar 

  16. Dollimore D, O’Connell C. A comparison of the thermal decomposition of preservatives, using thermogravimetry and rising temperature kinetics. Thermochim Acta. 1998;324:33–48.

    Article  CAS  Google Scholar 

  17. Burnham AK, Braun RL. Global kinetic analysis of complex materials: energy & fuels. Am Chem Soc J. 1999;13(1):1–22.

    CAS  Google Scholar 

  18. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Chao-Rui L, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  19. Maciejewski M. Computational aspects of kinetic analysis. Part B: the ICTA kinetics project–the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355(33):145–54.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Wight AC. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  21. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastics. J Polym Sci Part C. 1964; n.6:183–195.

    Google Scholar 

  22. Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermal-oxidative degradation of polymers and polymeric materials. Polym Degrad Stab. 2005;89:265–73.

    Article  CAS  Google Scholar 

  23. Gallagher PK. Thermogravimetry and thermomagnetometry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. vol 1: principles and practice. Amsterdam: Elsevier; 1998. p. 225–78.

    Google Scholar 

  24. Scott G. Initiation processes in polymer degradation. Polym Degrad Stab. 1995;48:315–22.

    Article  CAS  Google Scholar 

  25. Kopinke FD, Remmler M, Mackenzie K. Thermal decomposition of biodegradable polyesters–I: poly(β-hydroxybutyric acid). Polym Degrad Stab. 1996;52:25–38.

    Article  CAS  Google Scholar 

  26. Pereira SMF, Sánchez RJ, Rieumont J, Cabrera JG. Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding. Polym Eng Sci. 2008;48:2051–9.

    Article  CAS  Google Scholar 

  27. Rodríguez RJS, Silva MG, Vargas H, Briones JR. Phothoacustic monitoring of internal plastification in poly (3-hydroxybutirate-co-hydroxyvalerate) copolymers: measurements of thermal parameters. J Braz Chem Soc. 1999;10(2):97–103.

    Google Scholar 

  28. Yoshie N, Menju H, Sato H, Inoue Y. Complex composition distribution of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules. 1995;28(19):6516–21. doi:10.1021/ma00123a018.

    Article  CAS  Google Scholar 

  29. Doi Y, Kunioka M, Nakamura Y, Soga K. Nuclear magnetic resonance studies on poly(β -hydroxybutyrate) and a copolyester of β-hydroxybutyrate and β-hydroxyvalerate isolated from Alcaligenes eutrophus H16. Macromolecules. 1986;19(11):2860–4. doi:10.1021/ma00165a033.

    Article  CAS  Google Scholar 

  30. Bete D, Lehrle RS. The effect of blending on polymer stability: kinetics and mechanisms. Polym Degrad Stab. 1998;62:57–66.

    Article  Google Scholar 

  31. Ariffin H, Nishida H, Shirai Y, Hassan MA. Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polym Degrad Stab. 2008;93:1433–9.

    Article  CAS  Google Scholar 

  32. Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab. 2006;91:60–8.

    Article  CAS  Google Scholar 

  33. Erceg M, Kovacic T, Klaric I. Dynamic thermogravimetric degradation of poly(3-hydroxybutyrate)/aliphaticearomatic copolyester blends. Polym Degrad Stab. 2005;90:313–8.

    Article  CAS  Google Scholar 

  34. McNeill IC. Thermal degradation mechanisms of some addition polymers and copolymers. J Anal Appl Pyrolysis. 1997;40–41:21–41.

    Article  Google Scholar 

  35. Santos AF, Polese L, Crespi MS, Ribeiro CA. Kinetic model of poly(3-hydroxybutyrate) thermal degradation from experimental non-isothermal data. J Therm Anal Calorim. 2009;96(1):287–91.

    Article  CAS  Google Scholar 

  36. Galwey AK, Brown ME. Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochim Acta. 2002;386:91–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalma Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, D., Castillo, T.E. & Rodríguez, R.J.S. Effects of hydroxyvalerate contents in thermal degradation kinetic of cellulose acetate propionate/poly(3-hydroxyalkanoates) blends. J Therm Anal Calorim 109, 1353–1364 (2012). https://doi.org/10.1007/s10973-011-2152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2152-y

Keywords

Navigation