Skip to main content
Log in

Investigations on NH4VO3 thermal decomposition in dry air

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results of investigations on thermal decomposition of NH4VO3 in dry air have been presented. TG–DSC measurements were carried out under non-isothermal conditions at linear change of samples temperature in time and under isothermal conditions. Characterization of the products structure was performed by XRD method. MS method was used to determine evolved gaseous products. The decomposition of NH4VO3 was described by the following equation:

$$ 6 {\text{NH}}_{ 4} {\text{VO}}_{ 3} \to \, \left( {{\text{NH}}_{ 4} } \right)_{ 3} {\text{V}}_{ 6} {\text{O}}_{ 1 6} \to \, \left( {{\text{NH}}_{ 4} } \right)_{ 2} {\text{V}}_{ 6} {\text{O}}_{ 1 6} \to {\text{ V}}_{ 2} {\text{O}}_{ 5}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

α:

Conversion degree

β:

Heating rate/K/min

m 0 :

Initial sample mass for the stage/mg

m :

Current sample mass for the stage/mg

m k :

Final sample mass after for the stage/mg

t :

Time/min

T :

Temperature/K

T o :

Initial temperature of the stage/K

T m :

Temperature corresponding to peak maximum/K

TGu :

Normalized TG

References

  1. Rogl P, Bittermann H. Ternary metal boron carbides. Int Refract J Hard Mater. 1999;17:27–32.

    Article  CAS  Google Scholar 

  2. Ye J, Liu Y, Zhao Z, Jiang Z, Tang Z. Synthesis of VC nanopowders by thermal processing of precursor with CaF2 addition. J Alloy Comp. 2010;496(1–2):278–81.

    Article  CAS  Google Scholar 

  3. Liu YB, Liu Y, Tang HP, Wang B, Liu B. Reactive sintering mechanism of Ti + Mo2C and Ti + VC powder compacts. J Mater Sci. 2011;46(4):902–9.

    Article  CAS  Google Scholar 

  4. Jin Y, Liu Y, Wang Y, Ye J. Synthesis of (Ti, W, Mo, V) (C, N) nonocomposite powder from novel precursors. Int Refract J Hard Mater. 2010;28:541–3.

    Article  CAS  Google Scholar 

  5. Mutin PH, Popa AF, Vioux A, Delahay G, Coq B. Nonhydrolytic vanadian–titania xerogels: synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH3. Applied Catal B. 2006;69(1–2):49–57.

    Article  CAS  Google Scholar 

  6. Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH. One-step non-hydrolytic sol–gel preparation of efficient V2O5–TiO2 catalysts for VOC total oxidation. Applied Catal B. 2010;94(1–2):38–45.

    Article  CAS  Google Scholar 

  7. Biedunkiewicz A, Strzelczak A, Możdżeń G, Lelątko J. Non-isothermal oxidation of ceramic nanocomposites using the example of Ti–Si–C–N powder: kinetic analysis method. Acta Mater. 2008;56:3132–45.

    Article  CAS  Google Scholar 

  8. Biedunkiewicz A, Strzelczak A, Chrościechowska J. Non-isothermal oxidation of TiC x powder in dry air. Pol J Chem Technol. 2005;7(4):1–10.

    CAS  Google Scholar 

  9. Biedunkiewicz A, Gordon N, Straszko J, Tamir S. Kinetics of thermal oxidation of titanium carbide and its carbon nano-composites in dry air atmosphere. J Therm Anal Calorim. 2007;88(3):717–22.

    Article  CAS  Google Scholar 

  10. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  11. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  12. Brauner N, Shacham M. Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants. Chem Eng Proc. 1997;36(3):243–9.

    Article  CAS  Google Scholar 

  13. Schwaab M, Pinto JC. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: problems involving one kinetic constant. Chem Eng Sci. 2007;62(10):2750–64.

    Article  CAS  Google Scholar 

  14. Sbirrazzuoli N, Vincent L, Vyazovkin S. Comparison of several computational procedures for evaluating the kinetics of thermally stimulated condensed phase reactions. Chemometr Intell Lab Syst. 2000;54(1):53–60.

    Article  CAS  Google Scholar 

  15. Galway AK. What is meant by the term “variable activation energy” when applied in the kinetic analyses of solid state decompositions (cryptolysis reaction)? Thermochim Acta. 2003;397:249–68.

    Article  Google Scholar 

  16. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  17. Wanjun T, Yuwen L, Xi Y, Cunxin W. Kinetic studies of the calcination of ammonium metavanadate by thermal methods. Ing Eng Chem Res. 2004;43(9):2054–9.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of the study by the Ministry of Science and Higher Education within (The National Centre for Research and Development) the project No. NR15-0067-10/2010-2013, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Biedunkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biedunkiewicz, A., Gabriel, U., Figiel, P. et al. Investigations on NH4VO3 thermal decomposition in dry air. J Therm Anal Calorim 108, 965–970 (2012). https://doi.org/10.1007/s10973-011-2149-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2149-6

Keywords

Navigation