Skip to main content
Log in

Thermogravimetric analysis of single-walled carbon nanotubes synthesized by induction thermal plasma

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A standard procedure for thermogravimetric analysis (TG) of carbonaceous materials including single-walled carbon nanotubes was developed based on a statistical design to precisely study the effect of three main TG parameters: temperature ramp (TR, °C), initial mass (IM) of the sample (mg), and the rate of flowing gas (sccm) on the TG results. In addition, the effect of sampling including sample morphology and moisture content on TG were studied. The results of statistical design clearly showed that TG was affected by these three parameters and particularly by IM and TR. Interestingly, it was observed that the TG results are affected insufficiently by the sample morphology and low moisture content. This study also confirmed the potential of TG combined with high-resolution scanning electron microscopy to be a simple and straightforward method for purity evaluation of SWCNT-containing samples with a complex TG behavior such as those of induction thermal plasma grown. A complementary study on nano-metric catalysts indicated that these types of materials enable to gain or loss mass in an oxidative ambient during TG. A mass loss of 6% and a mass gain of 23% were observed for pure nano-metric yttrium oxide and nickel, respectively. A simple calculation showed a total mass gain of 1 wt% particularly by the catalysts in the SWCNT sample during TG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martins EPS, Botelho JR, Oliveira SF, Arakaki LNH, Fonseca MG, Espínola JGP. Thermal decomposition study of antimony (III) tribromide and aromatic amine adducts. J Therm Anal Calorim. 2009;97:427–31.

    Article  CAS  Google Scholar 

  2. Howell BA, Cho Y-J. Thermal decomposition of 2,4,4,5,5-pentaphenyl-1,3,2-dioxaphospholane. J Therm Anal Calorim. 2010;102:517–21.

    Article  CAS  Google Scholar 

  3. Yoshino S, Miyake A. Thermal decomposition properties of 1,2,4-triazole-3-one and guanidine nitrate mixtures. J Therm Anal Calorim. 2010;102:513–6.

    Article  CAS  Google Scholar 

  4. Howell BA, Chhetri P, Dumitrascu A, Stanton KN. Thermal degradation of platinum(IV) precursors to antitumor drugs. J Therm Anal Calorim. 2010;102:499–503.

    Article  CAS  Google Scholar 

  5. Sato Y, Funakoshi A, Okada K, Akiyoshi M, Matsunaga T, Koyama S, Ozawa M, Suzuki T. Study on thermal stability of tertiary pyridine resin. J Therm Anal Calorim. 2009;97:297–302.

    Article  CAS  Google Scholar 

  6. Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC. Thermal stability and degradation kinetics study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:415–9.

    Article  CAS  Google Scholar 

  7. Howell BA, Carter KE. Thermal stability of phosphinated diethyl tartrate. J Therm Anal Calorim. 2010;102:493–8.

    Article  CAS  Google Scholar 

  8. Iijima S, Ichihashi T. Single-sell carbon nanotubes of 1-nm diameter. Nature. 1993;363:737.

    Article  Google Scholar 

  9. Park YS, Kim KS, Jeong HJ, Kim WS, Moon JM, An KH, Bae DJ, Lee YS, Park GS, Lee YH. Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synth Met. 2002;126:245–51.

    Article  CAS  Google Scholar 

  10. Shi Z, Lian Y, Liau FH, Zhou X, Gu Z, Zhang Y, Ijima S, Li H, Yue KT, Zhang S-L. Large scale synthesis of single-walled carbon nanotubes by arc-discharge method. J Phys Chem Solids. 2000;61:1031–6.

    Article  CAS  Google Scholar 

  11. Kingston CT, Jakubek ZJ, Dénommée S, Simard B. Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon. 2004;42:1657–64.

    Article  CAS  Google Scholar 

  12. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Maias FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A. 1998;67:29–37.

    Article  CAS  Google Scholar 

  13. Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem Phys Lett. 2000;322:321–6.

    Article  CAS  Google Scholar 

  14. Murakami Y, Miyauchi Y, Chiashi S, Maruyama S. Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chem Phys Lett. 2003;374:53–8.

    Article  CAS  Google Scholar 

  15. Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G. Larg-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D. 2007;40:2375–88.

    Article  CAS  Google Scholar 

  16. Wendlandt WW. Thermal analysis. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  17. Kim KS, Moradian A, Mostaghimi J, Alinejad Y, Shahverdi A, Simard B, Soucy G. Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res. 2009;2:800–17.

    Article  CAS  Google Scholar 

  18. Poole CP, Owens FJ. Introduction to nanotechnology. 1st ed. Hoboken: Wiley; 2003.

    Google Scholar 

  19. Kim KS, Imris M, Shahverdi A, Alinejad Y, Soucy G. Single-walled carbon nanotubes prepared by large-scale induction thermal plasma process: synthesis, characterization and purification. J Phys Chem C. 2009;113:4340–8.

    Article  CAS  Google Scholar 

  20. Bokova MN, Decarne C, Abi-Aad E, Pryakhin AN, Lunin VV, Aboukaïs A. Kinetics of catalytic carbon black oxidation. Thermochim Acta. 2005;428:16–171.

    Article  CAS  Google Scholar 

  21. Ciambelli P, D’Amore M, Palma V, Vaccaro S. Catalytic oxidation of an amorphous carbon black. Combust Flame. 1994;99:413–21.

    Article  CAS  Google Scholar 

  22. Cho HG, Kim SW, Lim HJ, Yun CH. A simple and highly effective process for the purification of single-walled carbon nanotubes synthesized with arc-discharge. Carbon. 2009;47:3544–9.

    Article  CAS  Google Scholar 

  23. Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B. 2002;106:8671–5.

    Article  CAS  Google Scholar 

  24. Shi Z, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y, Ijima S. Purification of single-walled carbon nanotubes. Solid State Commun. 1999;112:35–7.

    Article  CAS  Google Scholar 

  25. Scaccia S, Carewska M, Prosini PP. Study of purification process of single-walled carbon nanotubes by thermoanalytical techniques. Thermochim Acta. 2005;435:209–12.

    Article  CAS  Google Scholar 

  26. Landi BJ, Cress CD, Evans CM, Raffaelle RP. Thermal oxidation profiling of single-walled carbon nanotubes. Chem Mater. 2005;17:6819–34.

    Article  CAS  Google Scholar 

  27. Borowiak-Palen E, Pichler T, Liu X, Knupfer M, Graff A, Jost O, Pompe W, Kalenczuk RJ, Fink J. Reduced diameter distribution of single-walled carbon nanotubes by selective oxidation. Chem Phys Lett. 2002;363:567–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Le Fonds québécois de la recherche sur la nature et les technologies (FQRNT) and the Natural Sciences and Engineering Research Council (NSERC) of Canada. The author would like to thank Dr. Alireza Hekmat for proof reading of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gervais Soucy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahverdi, A., Soucy, G. Thermogravimetric analysis of single-walled carbon nanotubes synthesized by induction thermal plasma. J Therm Anal Calorim 110, 1079–1085 (2012). https://doi.org/10.1007/s10973-011-2114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2114-4

Keywords

Navigation