Journal of Thermal Analysis and Calorimetry

, Volume 110, Issue 3, pp 1407–1414 | Cite as

Effect of ZnO nanoparticles on kinetics of thermal degradation and final properties of ethylene–propylene–diene rubber systems

  • Mohammadreza Kalaee
  • Shahin Akhlaghi
  • Saeedeh Mazinani
  • Alireza Sharif
  • Younes Charesaz Jarestani
  • Mehrzad Mortezaei


The morphology, thermal degradation behavior in addition to static and dynamic mechanical properties of various ethylene–propylene–diene (EPDM) rubber compounds containing nano-zinc oxide (NZnO) were investigated compared to those of EPDM with ordinary-sized ZnO (OSZnO). The field-emission scanning electron microscopy studies showed that unlike the conventional system, the formation of large size ZnO agglomerates was discouraged for NZnO filled systems. Thermogravimetric analysis (TG) revealed that the thermal degradation of EPDM system was delayed upon the inclusion of NZnO instead of OSZnO in the compound. The kinetic analysis of TG data based on Friedman and Kissinger methods showed that the nanocomposite samples exhibited higher activation energy (Ea) and lower order of reaction (n) over the conventional system, suggesting the enhancement of thermal stability upon decreasing ZnO particle size. The results obtained from dynamic mechanical analysis and static mechanical characterizations in terms of hardness, resilience, and abrasion tests interestingly indicated that NZnO not merely could act as a thermal insulator, but also could perform as a nano-filler to improve the final performance of EPDM elastomers.


Nano-zinc oxide EPDM Thermal behavior Thermal degradation kinetics Dynamic mechanical analysis 


  1. 1.
    Hayat K, Gondal MA, Khaled MM, Ahmed S, Shemsi AM. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A: Gen. 2011;393:122–9.CrossRefGoogle Scholar
  2. 2.
    Chen CC, Liu P, Lu C. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chem Eng J. 2008;144:509–13.CrossRefGoogle Scholar
  3. 3.
    Liewhiran C, Seraphin S, Phanichphant S. Synthesis of nano-sized ZnO powders by thermal decomposition of zinc acetate using Broussonetia papyrifera (L.) Vent pulp as a dispersant. Curr Appl Phys. 2006;6:499–502.CrossRefGoogle Scholar
  4. 4.
    Carnes CL, Klabunde KJ. Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide. Langmuir. 2000;16:3764–72.CrossRefGoogle Scholar
  5. 5.
    Gao PX, Lao CS, Hughes WL, Wang ZL. Three-dimensional interconnected nanowire networks of ZnO. Chem Phys Lett. 2005;408:174–8.CrossRefGoogle Scholar
  6. 6.
    Przybyszewska M, Zaborski M. Effect of ionic liquids and surfactants on zinc oxide nanoparticle activity in crosslinking of acrylonitrile butadiene elastomer. J Appl Polym Sci. 2010;116:155–64.CrossRefGoogle Scholar
  7. 7.
    Heideman G, Datta RN, Noordermeer JWM, van Baarle B. Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies. J Appl Polym Sci. 2005;95:1388–404.CrossRefGoogle Scholar
  8. 8.
    Heideman G, Noordermeer JWM, Datta RN, van Baarle B. Modified clays as activator in sulphur: a novel approach to reduce zinc oxide levels in rubber compounds. Kautschuk Gummi Kunststoffe. 2003;56:650–8.Google Scholar
  9. 9.
    Pysklo L, Pawlowski P, Nicinski K, Slusarski L, Wlodarska M, Bak G. Study on reduction of zinc oxide level in rubber compounds: part ii mechanism of activation of sulphur vulcanisation by means of the interphase transfer catalyst 18-crown-6-ether. Kautschuk Gummi Kunststoffe. 2008;61:442–8.Google Scholar
  10. 10.
    Heideman G, Noordermeer JWM, Datta RN, van Baarle B. Various ways to reduce zinc oxide levels in S‐SBR rubber compounds. Macromol Symp. 2006;245–246:657–67.CrossRefGoogle Scholar
  11. 11.
    Akhlaghi S, Kalaee M, Mazinani S, Jowdar E, Nouri A, Sharif A, Sedaghat N. Effect of zinc oxide nanoparticles on isothermal cure kinetics, morphology and mechanical properties of EPDM rubber. Thermochimica Acta. 2011; doi:10.1016/j.tca.201110.015.
  12. 12.
    Sahoo S, Bhowmick AK. Influence of ZnO Nanoparticles on the cure characteristics and mechanical properties of carboxylated nitrile rubber. J Appl Polym Sci. 2007;106:3077–83.CrossRefGoogle Scholar
  13. 13.
    Xiong M, Gu G, You B, Wu L. Preparation and Characterization of poly(styrene butylacrylate) latex/nano-ZnO nanocomposites. J Appl Polym Sci. 2003;90:1923–31.CrossRefGoogle Scholar
  14. 14.
    Sahoo S, Maiti M, Ganguly A, Jacob George J, Bhowmick AK. Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. J Appl Polym Sci. 2007;105:2407–15.CrossRefGoogle Scholar
  15. 15.
    Begum PMS, Yusuff KKM, Joseph R. Preparation and use of nano zinc oxide in neoprene rubber. Int J Polym Mater. 2008;57:1083–94.CrossRefGoogle Scholar
  16. 16.
    Jincheng W, Yuehui C. Application of nano-zinc oxide master batch in polybutadiene styrene rubber system. J Appl Polym Sci. 2006;101:922–30.CrossRefGoogle Scholar
  17. 17.
    Wang Z, Lu Y, Liu J, Dang Z, Zhang L, Wang W. Preparation of nano-zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties. J Appl Polym Sci. 2011;119:1144–55.CrossRefGoogle Scholar
  18. 18.
    Gu H, He JM, Hu J, Huang YD. Thermal degradation kinetics of semi-aromatic polyamide containing benzoxazole unit. J Therm Anal Calorim. doi:10.1007/s10973-011-1778-0.
  19. 19.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Appl Polym Sci. 1964;6:183–95.Google Scholar
  20. 20.
    Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim. 2011; doi:10.1007/s10973-011-1945-3.
  21. 21.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  22. 22.
    Quanlin Z, Li X, Gao J. Aging behavior and mechanism of ethylene–propylene–diene monomer (EPDM) rubber in fluorescent UV/condensation weathering environment. Polym Degrad Stab. 2009;94:339–43.CrossRefGoogle Scholar
  23. 23.
    Ma X, Zhang W. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab. 2009;94:1103–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Mohammadreza Kalaee
    • 1
  • Shahin Akhlaghi
    • 2
  • Saeedeh Mazinani
    • 3
  • Alireza Sharif
    • 4
  • Younes Charesaz Jarestani
    • 5
  • Mehrzad Mortezaei
    • 2
  1. 1.Polymer Engineering Group, Department of EngineeringQom University of TechnologyQomIran
  2. 2.Department of Polymer Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Amirkabir Nanotechnology Research Institute (ANTRI)Amirkabir University of TechnologyTehranIran
  4. 4.Department of Chemical Engineering, Polymer Engineering GroupTarbiat Modares UniversityTehranIran
  5. 5.Department of Polymer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations