Skip to main content
Log in

An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the melting/freezing characteristics of paraffin by adding Cu nanoparticles. Cu/paraffin composite phase change materials (PCMs) were prepared by a two-step method. The effects of Cu nanoparticles on the thermal conductivity and the phase change heat transfer of PCMs were investigated by the Hot Disk thermal constants analyzer and infrared monitoring methods, respectively. The maximum thermal conductivity enhancements up to 14.2% in solid state and 18.1% in liquid state are observed at the 2 wt% Cu/paraffin. The photographs of infrared monitoring suggest that the melting and freezing rates of Cu/paraffin are enhanced. For 1 wt% Cu/paraffin, the melting and freezing times can be saved by about 33.3 and 31.6%, respectively. The results provide that adding nanoparticles is an efficient way to enhance the phase change heat transfer of PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patrice P, Cynthia AC, Ian BM, Adam W. A review of available methods for seasonal storage of solar thermal energy in residential applications. Renew Sust Energ Rev. 2011;15(7):3341–59.

    Article  Google Scholar 

  2. Nithyanandam K, Pitchumani R. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. Int J Heat Mass Tranf. 2011;54(21–22):4596–610.

    Article  CAS  Google Scholar 

  3. Kousksou T, Jamil A, Rhafiki TE, Zeraouli Y. Paraffin wax mixtures as phase change materials. Sol Energy Mat Sol C. 2010;94(12):2158–65.

    Article  CAS  Google Scholar 

  4. Zhong YJ, Li SZ, Wei XH, Gao XQ, Shi JL, Guo QG, Liu L. Carbon matrices with different pore structures as heat transfer intensifier in paraffin wax/carbon thermal energy storage system. Carbon. 2010;48(5):1695–795.

    Article  CAS  Google Scholar 

  5. Xiang J, Drzal LT. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mat Sol C. 2011;95(7):1811–8.

    Article  CAS  Google Scholar 

  6. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sust Energ Rev. 2010;14(2):615–28.

    Article  CAS  Google Scholar 

  7. Ermis K, Erek A, Dincer I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network. Int J Heat Mass Tran. 2007;50(15–16):3163–75.

    Article  Google Scholar 

  8. Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1467-z.

  9. Mettawee EBS, Assassa GMR. Thermal conductivity enhancement in a latent heat storage system. Sol Energy. 2007;81:839–45.

    Article  CAS  Google Scholar 

  10. Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett. 2009;9(12):4128–32.

    Article  CAS  Google Scholar 

  11. Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, Zhang T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87(2):369–73.

    Article  CAS  Google Scholar 

  12. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101(1):385–9.

    Article  CAS  Google Scholar 

  13. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95(2):507–12.

    Article  CAS  Google Scholar 

  14. Ho CJ, Gao JY. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass. 2009;36(5):467–70.

    Article  CAS  Google Scholar 

  15. Hong Y, Ding SJ, Wu W, Hu JJ, Voevodin AA, Gschwender L, Snyder E, Chow L, Su M. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. Acs Appl Mat Interfaces. 2010;2(6):1685–91.

    Article  CAS  Google Scholar 

  16. Wang JF, Xie HQ, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488(1–2):39–42.

    Article  CAS  Google Scholar 

  17. Fan L. Enhanced thermal conductivity and expedited freezing of nanoparticle suspensions utilized as novel phase change materials. Alabama: Auburn University; 2011.

  18. Cui Y, Liu CH, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mat Sol C. 2011;95(4):1208–12.

    Article  CAS  Google Scholar 

  19. Liu YD, Zhou YG, Tong MW, Zhou XS. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs. Microfluid Nanofluid. 2009;7(4):579–84.

    Article  CAS  Google Scholar 

  20. Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass. 2007;34(5):534–43.

    Article  CAS  Google Scholar 

  21. Guo CX. Application study of nanoparticle-enhanced phase change material in ceiling board. Adv Mater Res. 2011;150:723–6.

    Article  Google Scholar 

  22. Wu SY, Zhu DS, Zhang XR, Huang J. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energ Fuel. 2010;24:1894–8.

    Article  CAS  Google Scholar 

  23. Wu SY, Zhu DS, Li XF, Li H, Lei JX. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta. 2009;483(1–2):73–7.

    Article  CAS  Google Scholar 

  24. Instruction Manual: hot disk thermal constants analyzer. Hot Disk Inc.; 2004.

  25. Ma RS, Fang RS. Practical thermophysical property manual. Beijing: China Agriculture Machine Press; 1986. (in Chinese).

    Google Scholar 

  26. Karaipekli A, Sari A. Preparation, thermal properties and thermal reliability of palmitic acid-expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mat Sol C. 2009;93:571–6.

    Article  Google Scholar 

  27. Das SK. Nanofluids—the cooling medium of the future. Heat Transfer Eng. 2006;27(10):1–2.

    Article  CAS  Google Scholar 

  28. Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 2005;25(11–12):1623–33.

    Article  CAS  Google Scholar 

  29. Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mat Sol C. 2011;95(7):1647–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Joint Funds of the National Natural Science Foundation of China (Grant number U0937604) and the Application of Basic Research Projects of Yunnan, China (Grant number 2011FZ032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S.Y., Wang, H., Xiao, S. et al. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J Therm Anal Calorim 110, 1127–1131 (2012). https://doi.org/10.1007/s10973-011-2080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2080-x

Keywords

Navigation