Skip to main content
Log in

Thermal stability and crystallization kinetics of Se–Te–Sn alloys using differential scanning calorimetry

DSC study of Se92Te8−x Sn x (x = 0, 1, 2, 3, 4, 5) chalcogenide glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present article deals with the differential scanning calorimetric (DSC) study of Se–Te glasses containing Sn. DSC runs are taken at four different heating rates (10, 15, 20 and 25 K min−1). The crystallization data are examined in terms of modified Kissinger, Matusita equations, Mahadevan method and Augis and Bennett approximation for the non-isothermal crystallization. The activation energy for crystallization (E c) is evaluated from the data obtained at different heating rates. Activation energy of glass transition is calculated by Kissinger’s relation and Moynihan theory. The glass forming tendency is also calculated for each composition. The glass transition temperature and peak crystallization temperature increases with the increase in Sn % as well as with the heating rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar H, Mehta N, Kumar A. Effect of some chemical modifiers on the glass/crystal transformation in binary Se90In10 alloy. J Therm Anal Calorim. 2011;103:903–9.

    Article  CAS  Google Scholar 

  2. Aly AK, Dahshan A, Abdel-Rahim FM. Thermal stability of Ge–As–Te–In glasses. J Alloys Compd. 2009;470:574–9.

    Article  CAS  Google Scholar 

  3. Lian ZG, Pan W, Furniss D, Benson TM, Seddon AB, Kohoutek T, Orava J, Wagner T. Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. Opt Lett. 2009;34:1234–6.

    Article  CAS  Google Scholar 

  4. Kumar R, Sharma P, Rangra VS. Kinetic studies of bulk Se92Te8−x Sn x (x = 0, 1, 2, 3, 4 and 5) semiconducting glasses by DSC technique. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1661-z.

  5. Savage JA. Infrared optical materials and their antireflection coatings. Bristol: Adam Hilger; 1985.

    Google Scholar 

  6. Choi D, Madden S, Bulla D, Wang R, Rode A, Luther-Davies B. Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance. J Appl Phys. 2010;107:053106. doi:10.1063/1.3310803 (6 pages).

    Google Scholar 

  7. Tanaka K. Structural phase transitions in chalcogenide glasses. Phys Rev B. 1989;39:1270–9.

    Article  CAS  Google Scholar 

  8. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  9. Rysava N, Spasov T, Tichy L. Isothermal DSC method for evaluation of the kinetics of crystallization in the Ge-Sb-S glassy system. J Therm Anal. 1987;32:1015–21.

    Article  CAS  Google Scholar 

  10. Giridhar A, Mahadevan S. Studies on the As-Sb-Se glass system. J Non-Cryst Solids. 1982;51:305–15.

    Article  CAS  Google Scholar 

  11. Afify N. Differential scanning calorimetric study of chalcogenide glass Se0.7Te0.3. J Non-Cryst Solids. 1991;128:279–84.

    Article  CAS  Google Scholar 

  12. Strink MJ, Zahra AM. Determination of the transformation exponent s from experiments at constant heating rate. Thermochim Acta. 1997;298:179–89.

    Article  Google Scholar 

  13. Majeed Khan MA, Zulfequar M, Husain M. Optical investigation of a-Se100−xBix alloys. J Opt Mater. 2003;22:21–9.

    Article  CAS  Google Scholar 

  14. Sharma P, Katyal SC. Effect of tellurium addition on the optical behaviour of germanium selenide glassy semiconductors. Phys B. 2008;403:3667–71.

    Article  CAS  Google Scholar 

  15. Kumar H, Mehta N, Singh K. Calorimetric studies of glass transition phenomenon in glassy Se80-xTe20Snx. Phys Scr. 2009;80. doi:10.1088/0031-8949/80/06/065602.

  16. Lezal D, Zavadil J, Prochazka M. Sulfide, selenide and telluride glassy systems for optoelectronic applications. J Optoelectron Adv Mater. 2005;7:2281–91.

    CAS  Google Scholar 

  17. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  18. Kaur G, Thangaraj R, Komatsu T. Crystallization kinetics of bulk amorphous Se–Te–Sn system. J Mater Sci. 2001;36:4530–3.

    Article  Google Scholar 

  19. Bicerno J, Ovshinsky SR. Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J Non-Cryst Solids. 1985;74:75–84.

    Article  Google Scholar 

  20. Williams RJP, Fraústo da Silva JJR. The natural selection of chemical elements: the environment and life’s chemistry. New York: Oxford University Press Inc.; 1997. p. 58.

  21. Kumar R, Sharma P, Katyal SC, Sharma P, Rangra VS. A study of Sn addition on bonding arrangement of Se–Te alloys using far infrared transmission spectroscopy. J Appl Phys. 2011;110. doi:10.1063/1.3603010 (5 pages).

  22. Mohynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  Google Scholar 

  23. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Mater Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  24. Mehra RM, Kaur G, Mathur PC. Crystallization kinetics of bulk amorphous Se80-xSbxTe20. J Mater Sci. 1991;26:3433–7.

    Article  CAS  Google Scholar 

  25. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As-Sb-Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  26. Matusita K, Konatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  27. Deepika, Rathore KS, Saxena NS. A kinetic analysis of non-isothermal glass-crystal transformation in Ge1-x SnxSe2.5 (0 ≤ x ≤ 0.5) glasses. J Phys Condens Matter. 2009;21. doi:10.1088/0953-8984/21/33/335102.

  28. Chander R, Thangaraj R. Thermal and optical analysis of Te substituted Sn–Sb–Se chalcogenide semiconductors. Appl Phys A. 2010;99:181–7.

    Article  CAS  Google Scholar 

  29. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  30. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  31. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Sharma, P., Barman, P.B. et al. Thermal stability and crystallization kinetics of Se–Te–Sn alloys using differential scanning calorimetry. J Therm Anal Calorim 110, 1053–1060 (2012). https://doi.org/10.1007/s10973-011-2062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2062-z

Keywords

Navigation