Journal of Thermal Analysis and Calorimetry

, Volume 108, Issue 2, pp 665–670 | Cite as

Microcalorimetric study of the growth of Enterococcus faecalis in an enriched culture medium

  • Natividad Lago Rivero
  • José L. Legido Soto
  • Lidia M. Casás
  • Isaac Arias Santos


Enterococcus faecalis is a Gram-positive bacteria, considered one of the most common causes of nosocomial infections. Bacterial cultures produce an exchange of energy as a result of the bacteria metabolisms. The rate of heat production is an adequate measure of the metabolic activity of the organisms and their constituent parts. Microorganisms produce small amounts of heat: 1–3 pW per cell. Although the heat produced by bacteria is very small, their exponential reproduction in a culture medium permits heat detection through microcalorimetry. In this study, we analyzed the microcalorimetric behavior of Enterococcus faecalis. A thermal Calvet microcalorimeter was used. The inside of the calorimeter contains two stainless steel cells (experimental and reference). Experiments were carried out at final concentrations of 106,105,103, and 10 CFU/mL and a constant temperature of 309.65 K was maintained within the microcalorimeter. Recording the difference in calorific potential over time we obtained E. faecalis’s growth curves. Thermograms were analyzed mathematically allowing us to calculate the constant growth, generation time and the amount of heat exchanged over the culture time.


Enterococcus faecalis Microcalorimetry Metabolism Bacteria 


  1. 1.
    Murray P, Rosenthal K, Pfaller M. Microbiología médica. España: Elsevier Mosby; 2009.Google Scholar
  2. 2.
    Kenneth J, Ryan C, George R. Microbiología médica. Una introducción a las enfermedades infecciosas. Madrid: McGraw Hill; 2004.Google Scholar
  3. 3.
    Calvet E, Prat H. Microcalorimétrie: aplications physico-chimiques et biologiques. Paris: Masson el Cie Editeurs; 1956.Google Scholar
  4. 4.
    Ma J, Qi WT, Yang LN, Yu WT, Xie YB, Wang W. Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture. J Microbiol Methods. 2007;68:172–7.CrossRefGoogle Scholar
  5. 5.
    James AM. Calorimetry. Past, present and future. In: Thermal and energetic studies of cellular biological systems. Bristol: IOP Publishing Ltd; 1987Google Scholar
  6. 6.
    Trampuz A, Salzmann S, Antheaume J, Daniela AU. Microcalorimetry: a novel method for detection of microbial contamination in platelet products. Transfusion. 2007;47:1643–50.CrossRefGoogle Scholar
  7. 7.
    Lago N, Legido JL, Arias I, García F. Aplicaciones de la microcalorimetría como método de identificación precoz del crecimiento bacteriano. Invest Cult Cienc Tecnol. 2010;2(3):6–9.Google Scholar
  8. 8.
    Lago N, Legido JL, Paz-Andrade MI, Arias I, Casás LM. Microcalorimetric study on the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2011;105(2):651–5.CrossRefGoogle Scholar
  9. 9.
    Paz Andrade MI. Les Dévelopements Récents de la Microcalorimétrie et de la Thermogenese. 1st ed. Paris: CRNS; 1967.Google Scholar
  10. 10.
    O`Neill M, Vine G, Beezer A, Bishop A, Hadgraft J, Labetoulle Ch. Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study. Int J Pharm. 2003;263:61–8.CrossRefGoogle Scholar
  11. 11.
    Wang X, Liu Y, Xie B, Shi X, Zhou J, Zhang H. Effects of nisin on the growth of Staphylococcus aureus determined by a microcalorimetric method. Mol Nutr Food Res. 2005;49:350–4.CrossRefGoogle Scholar
  12. 12.
    Liang H, Wu J, Liu Y, Yang L, Hu L, Qu S. Kinetics of the action of three selenides on Staphylococcus aureus growth as studied by microcalorimetry. Biol Trace Elem Res. 2003;92:181–7.CrossRefGoogle Scholar
  13. 13.
    Yang LN, Xian L, Xu F, Zhang J, Zhao JN, Zhao ZB. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100:589–92.CrossRefGoogle Scholar
  14. 14.
    Xu XJ, Chen C, Wang Z, Zhang Y, Hou A, Li C. Antibacterial activities of novel diselenide-bridged bis(Porphyrin)s on Staphylococcus aureus investigated by microcalorimetry. Biol Trace Elem Res. 2008;125:185–92.CrossRefGoogle Scholar
  15. 15.
    Yan D, Hna YM, Wei L, Xiao XH. Effect of berberine alkaloids on Bifidobacterium adolescentis growth by microcalorimetry. J Therm Anal Calorim. 2009;95(2):495–9.CrossRefGoogle Scholar
  16. 16.
    Kong W, Li Z, Xiao X, Zhao Y, Zhang P. Activity of barberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102:331–6.CrossRefGoogle Scholar
  17. 17.
    Baldoni D, Hermann H, Frei R, Trampuz A, Steinhuber A. Performance of microcalorimetry for early detection of methicillin resistance in clinical isolates of Staphylococcus aureus. J Clin Microbiol. 2009;47(3):774–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Natividad Lago Rivero
    • 1
  • José L. Legido Soto
    • 2
  • Lidia M. Casás
    • 2
  • Isaac Arias Santos
    • 1
  1. 1.Servicio de FarmaciaComplejo Hospitalario Universitario de Vigo (Xeral-Cíes)VigoSpain
  2. 2.Departamento de Física Aplicada, Facultade de Ciencias ExperimentaisUniversidade de VigoVigoSpain

Personalised recommendations