Skip to main content
Log in

The effect of carbonisation temperatures on nanoporous characteristics of activated carbon fibre (ACF) derived from oil palm empty fruit bunch (EFB) fibre

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Activated carbon fibre (ACF) is a nanoporous material which is useful for various important applications such as safe biogas and natural gas storage as well as heavy/precious metals removal and recovery. It is commonly produced from synthetic fibres such as rayon, polyacrylnitrile and pitch mainly derived from petroleum products, which are less environmental friendly. Besides, cost of ACF production is high due to the high burnt off percentage of such expensive raw materials. As an alternative, natural fibre of oil palm empty fruit bunch was used as a raw material for ACF preparation. Thermogravimetric analysis was carried out with two different gases, i.e. nitrogen gas and oxygen gas in order to observe pyrolysis and combustion behaviours in different gases. Carbonisation temperatures were then identified from the peaks of derivative thermogravimetry results. Different carbonisation temperatures (85–200 °C) were chosen to carbonise the EFB fibre to observe the effect of carbonisation temperatures on the nanoporous characteristics, i.e. surface area, pore size distribution and pore volume of the ACF produced. Good nanoporous characteristics such as surface area up to 2,740 m2/g of the ACF prepared were observed, suggesting EFB fibre as an excellent candidate to replace synthetic fibre for ACF production. The discussion of relationship between thermal characteristics and nanopores in ACF derived from EFB were also included in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Derylo-Marczewska A, Blachnio M, Marczewski AW, Swiatkowski A, Tarasiuk B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim. 2010;101(2):785–94.

    Article  CAS  Google Scholar 

  2. Vargas JE, Giraldo L, Moreno-Piraján JC. Enthalpic characterization of activated carbons obtained from Mucuna mutisiana with different burn-offs. J Therm Anal Calorim. 2010;102(3):1105–9.

    Article  CAS  Google Scholar 

  3. Murillo YS, Giraldo L, Moreno-Piraján JC. Determination of partial immersion enthalpy in the interaction of water and activated carbon. J Therm Anal Calorim. 2011;104(2):555–9.

    Article  CAS  Google Scholar 

  4. Daley MA, Tandon D, Economy J, Hippo EJ. Elucidating the porous structure of activated carbon fibers using direct and indirect methods. Carbon. 1996;34(10):1191–200.

    Article  CAS  Google Scholar 

  5. Lee SM, Kaneko K. Preparation of ultramicroporous carbon fiber of high adsorption capacity. Carbon. 2003;41(2):374–6.

    Article  CAS  Google Scholar 

  6. Gao F, Zhao DL, Li Y, Li XG. Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area. J Phys Chem Solids. 2010;71(4):444–7.

    Article  CAS  Google Scholar 

  7. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci. 2008;318(1):42–9.

    Article  CAS  Google Scholar 

  8. Carrott PJM, Nabais JMV, Carrott Ribeiro MML, Pajares JA. Preparation of activated carbon fibres from acrylic textile fibres. Carbon. 2001;39:1543–55.

    Article  CAS  Google Scholar 

  9. Alcañiz-Monge J, Cazorla-Amorós D, Linares-Solano A, Yoshida S, Ova A. Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. Carbon. 1994;32(7):1277–83.

    Article  Google Scholar 

  10. Derbyshire F, Andrews R, Jacques D, Jagtoyen M, Kimber G, Rantell T. Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors. Fuel. 2001;80(3):345–56.

    Article  CAS  Google Scholar 

  11. Asakura R, Morita M, Maruyama K, Hatori H, Yamada Y. Preparation of fibrous activated carbons from wood fiber. J Mater Sci. 2004;39(1):201–6.

    Article  CAS  Google Scholar 

  12. Malaysian Palm Oil Council (MPOC): The Oil Palm Tree. http://www.mpoc.org.my/The_Oil_Palm_Tree.aspx (2011). Accessed 31 May 2011.

  13. ASEAN Secretariat: Standards for Oil Palm Fibre. http://www.aseansec.org/7011.htm (2009). Accessed 31 May 2011.

  14. Malaysian Industrial Development Authority (MIDA): Felda and TNB to build biomass power plant. http://www.mida.gov.my/en_v2/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=1119&cntnt01returnid=107 (2011). Accessed 21 June 2011.

  15. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol. 2009;100(3):1413–8.

    Article  CAS  Google Scholar 

  16. Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy. 2007;32(4):649–61.

    Article  CAS  Google Scholar 

  17. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.

    Article  CAS  Google Scholar 

  18. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101(12):4584–92.

    Article  CAS  Google Scholar 

  19. Valix M, Cheung WH, Zhang K. Role of chemical pre-treatment in the development of super-high surface areas and heteroatom fixation in activated carbons prepared from bagasse. Microporous Mesoporous Mater. 2008;116(1–3):513–23.

    Article  CAS  Google Scholar 

  20. Petitjean D, Furdin G, Herold A, Dupont Pavlovsky N. New data on graphite intercalation compounds containing HClO4: synthesis and exfoliation. Mol Cryst Liq Cryst Sci Technol A. 1994;244:213–8.

    Google Scholar 

  21. Nassar MM, Ashour EA, Wahid SS. Thermal characteristics of bagasse. J Appl Polym Sci. 1996;61(6):885–90.

    Article  CAS  Google Scholar 

  22. Skreiberg A, Skreiberg O, Sandquist J, Sørum L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel. 2011;90(6):2182–97.

    Article  CAS  Google Scholar 

  23. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88(6):1024–30.

    Article  CAS  Google Scholar 

  24. Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn. 1983;16(6):470–5.

    Article  CAS  Google Scholar 

  25. Duke MC, Pas SJ, Hill AJ, Lin YS, Diniz Da Costa JC. Exposing the molecular sieving architecture of amorphous silica using positron annihilation spectroscopy. Adv Funct Mater. 2008;18(23):3818–26.

    Article  CAS  Google Scholar 

  26. Lyubchik SB, Benaddi H, Shapranov VV, Beguin F. Activated carbons from chemically treated anthracite. Carbon. 1997;35(1):162–5.

    Article  CAS  Google Scholar 

  27. Daulan C, Lyubchik SB, Rouzaud JN, Béguin F. Influence of anthracite pretreatment in the preparation of activated carbons. Fuel. 1998;77(6):495–502.

    Article  CAS  Google Scholar 

  28. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19.

    Article  CAS  Google Scholar 

  29. Dubinin NP. Work of Soviet biologists: theoretical genetics. Science. 1947;105(2718):109–12.

    Article  CAS  Google Scholar 

  30. Legrouri K, Khouya E, Ezzine M, Hannache H, Denoyel R, Pallier R, Naslain R. Production of activated carbon from a new precursor molasses by activation with sulphuric acid. J Hazard Mater. 2005;118(1–3):259–63.

    Article  CAS  Google Scholar 

  31. Katagiri A, Watanabe K, Yoshizawa S. Reduction of sulfuric acid by hydrogen on activated carbon impregnated with copper sulfate. Bull Chem Soc Jpn. 1981;54(1):1–4.

    Article  CAS  Google Scholar 

  32. Cuerda-Correa EM, Díaz-Díez MA, Macías-García A, Gañán-Gómez J. Preparation of activated carbons previously treated with sulfuric acid. A study of their adsorption capacity in solution. Appl Surf Sci. 2006;252(17):6042–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from USM Short-Term Grant, AUN/SEED-Net RA Grant and SRJP programme, USM Fellowship and USM Research University Postgraduate Research Grant Scheme are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Yee Yeoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, WC., Othman, R., Matsumoto, A. et al. The effect of carbonisation temperatures on nanoporous characteristics of activated carbon fibre (ACF) derived from oil palm empty fruit bunch (EFB) fibre. J Therm Anal Calorim 108, 1025–1031 (2012). https://doi.org/10.1007/s10973-011-2043-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2043-2

Keywords

Navigation