Skip to main content
Log in

Some aspects of composite inorganic polysialates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The state-of-art of polyaluminosialates is reviewed in terms of inorganic 〈mers〉 showing the composition, degree of netting, function of modifying atoms and the role of non-bridging oxygen as well as hydroxyl groups (biocompatibility). The polymeric condensation is compared with the vitrification of glasses upon cooling. The replacement of Si by P is discussed as well as the analogous precipitation process of amorphous hydrous silica (opal). Progress of geopolymers and biopolymers usefulness is shown within the framework of generalized world of macromolecules screening hundred contemporary citations. Pultrusion technology is presented, capable to produce composite geopolymers reinforced by basalt fibers staying suitable for mechanical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davidovits J. Geopolymers and geopolymeric materials. J Thermal Anal. 1989;35:429–41.

    Article  CAS  Google Scholar 

  2. Davidovits J. Geopolymers: inorganic polymeric materials. J Thermal Anal. 1991;37:1633–56.

    Article  CAS  Google Scholar 

  3. Davidovits J. Geopolymer chemistry and applications. 2008. Saint Quentin: Geopolymer Institute; 2008 (ISBN 2951482012).

  4. Glukovsky VD. Gruntosilikaty. Kiev: Grosstrojizdat; 1959 (in Russian).

  5. Brandštetr J. Slag-alkaline concretes, Stavivo. 1984;64:110–4 (in Czech).

    Google Scholar 

  6. Douglas E, Biloodeau A, Brandštetr J, Malhota M. Activated ground granulated blast-furnace slag: preliminary investigation. Cem Concr Res. 1991;21:101–8.

    Article  CAS  Google Scholar 

  7. Douglas E, Bilodeau A, Malhotra VM. Properties and durability of alkali-activated slag concrete. ACI Mater J. 1992;89:509–16.

    CAS  Google Scholar 

  8. Xu H, Van Deventer JSJ. The geopolymerization of alumino-silicate minerals. Int J Miner Proc. 2000;59:247–66.

    Article  CAS  Google Scholar 

  9. F. Šoukal T. Opravil P, Ptáček B, Foller B, Brandštetr J, Roubíček P. Geopolymers—amorphous ceramics via solution. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. Plzeň: OPS-ZČU; 2009, pp. 556–584 (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz).

  10. Fletcher RA, MacKenzie KJD, Nicholson CL. The composition range of aluminosilicate geopolymers. J Eur Ceram Soc. 2005;25:1471–7.

    Article  CAS  Google Scholar 

  11. Shi C, Krivenko VP, Roy D. Alkali-activated cements and concretes. Bristol: Taylor and Francis; 2006 (ISBN 978-0-415-70004-7)

  12. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. Geopolymers: the current state of the art. J Mater Sci. 2007;42:2917–33.

    Article  CAS  Google Scholar 

  13. Škvára F. Alkali activated materials or geopolymers? Ceram Silik. 2007;51:173–8.

    Google Scholar 

  14. Kriven WM. Inorganic polysialates or geopolymers. Am Ceram Soc Bul. 2010;89:31–4.

    CAS  Google Scholar 

  15. Rahier H, Simons W, VanMele B. Low-temperature synthesized aluminosilicate glasses. 3: Influence of the composition of the silicate solution on production, structure and properties. J Mater Sci. 1997;32:2237–47.

    Article  CAS  Google Scholar 

  16. Barbosa VFF, MacKenzie KJD. Synthesis and thermal behavior of potassium sialate geopolymers. Mater Lett. 2003;57:1477–82.

    Article  CAS  Google Scholar 

  17. O’Connors SJ, MacKenzie KJD. Synthesis, characterization and thermal behavior of lithium aluminosilicate inorganic polymers. J Mater Sci. 2010;45:3707–13.

    Article  Google Scholar 

  18. Rahier H, Denayer JF, Van Mele B. Low-temperature synthesized aluminosilicate glasses—Part IV—modulated DSC study on the effect of particle size of metakaolinite on the production of inorganic polymer glasses. J Mater Sci. 2003;38:3131–6.

    Article  CAS  Google Scholar 

  19. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolinite-based geopolymers. Colloid Surf Physcochem Eng Asp. 2007;292:8–20.

    Article  CAS  Google Scholar 

  20. Duxson P, Provis JL. Designing precursors for geopolymer cements. J Am Ceram Soc. 2008;91:3864–9.

    Article  CAS  Google Scholar 

  21. Bel JL, Driemeyer PE, Kriven WM. Formation of ceramics from metakaolin based geopolymers. J Am Ceram Soc. 2009;91:607–15.

    Article  Google Scholar 

  22. Yip CK, Lukey GC, Provis JL. Effect of calcium silicate sources on geopolymerization. Cem Concr Res. 2008;38:554–64.

    Article  CAS  Google Scholar 

  23. O’Connor SJ, MacKenzie KJD, Smith EM, Hanna JV. Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers. J Mater Chem. 2010;20:10234–40.

    Article  Google Scholar 

  24. Barbosa VFF, MacKenzie KJD, Thaumaturgo C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater. 2000;2:309–17.

    Article  CAS  Google Scholar 

  25. Tailby J, MacKenzie KJD. Structure and mechanical properties of aluminosilicate geoplolymer composites with Portland cement and its constituent minerals. Cem Concr. 2010;40:787–94.

    Article  CAS  Google Scholar 

  26. Cui XM, Liu LP, Zheng GJ. Characterization of chemosynthetic Al2O3–2SiO2 geopolymers. J Non-cryst Sol. 2010;356:72–6.

    Article  CAS  Google Scholar 

  27. Bernal SA, Rodriguez ED, Mejia de Gutierrez R. Mechanical and thermal characterization of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci. 2011;46:5477–86.

    Article  CAS  Google Scholar 

  28. Barbosa VFF, MacKenzie KJD. Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull. 2003;38:319–31.

    Article  CAS  Google Scholar 

  29. Zaharaki D, Kommitsas K, Perdikatsis V. Use of analytical techniques for identification of inorganic polymer gel composition. J Mater Sci. 2010;45:2715–24.

    Article  CAS  Google Scholar 

  30. Lobbus M, Vogelsberger W, Sonnefield J, Seidel A. Current considerations for the dissolution kinetics of solid oxides with silica. Langmuir. 1998;14:3023–33.

    Article  Google Scholar 

  31. Trish TT, Jansen API, van Santen RA. Mechanism of oligomerization reactions of silica. J Phys Chem. 2006;110:23099–106.

    Article  Google Scholar 

  32. Hlae D, Chandhary R. Mechanism of geopolymerization and factors influencing its development—a review. J Mater Sci. 2007;42:729–46.

    Article  Google Scholar 

  33. Rahier H, Wastiels J, Biesemans M, Williem R, van Assche G, van Mele B. Reaction mechanism, kinetics and high temperature transformation of geopolymers. J Matter Sci. 2007;42:2982–96.

    Article  CAS  Google Scholar 

  34. Provis JL, van Deventer JSJ. Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci. 2007;62(9):2318–29.

    Article  CAS  Google Scholar 

  35. John L, Walls Philip A, van Deventer Jannie S. J. Geopolymerization kinetics 3—effects of Cs and Sr salts. Chem Eng Sci. 2008;63:4480–9.

    Article  Google Scholar 

  36. De Silva P, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem Concr Res. 2007;37:512–8.

    Article  Google Scholar 

  37. Buchwald A, Vicent M, Kriegel R. Geopolymeric binders with different fine fillers—phase transformations at high temperatures. Appl Clay Sci. 2009;46:190–5.

    Article  CAS  Google Scholar 

  38. Lloyd RR, Provis JL, van Deventer JSJ. Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. Cem Concr. 2010;40:1386–92.

    Article  CAS  Google Scholar 

  39. Tian H, Zhang C, Wu L, XChen Y. Studies of mechanism of silica polymerization reactions in the combination of silica sol and potassium sodium water glass via isothermal heat conduction microcalorimetry. J Thermal Anal Calorim. 2010;101:064–959.

    Article  Google Scholar 

  40. Mysen BO, Richet P. Silicate glasses and melts: properties and structure, developments in geochemistry. Amsterdam: Elsevier; 2005 (ISBN 0-444-52011-2).

  41. Virgo D, Mysen BO, Kushiro I. Anionic constitution of silicate melts. Science. 1979;208:1371–7.

    Article  Google Scholar 

  42. Murduch JB, Stebinm JF, Carmicheal ISE. Effect of network-modifying cations in silicate and aluminosilicate melts and glasses. Am Mineral. 1985;70:332–9.

    Google Scholar 

  43. Těmkin M. Mixtures of fused salts as ionic solutions. Acta Physicochem URSS. 1945;20:4511–9 (in Russian).

    Google Scholar 

  44. Macháček J, Gedeon O, Liška M. Group connectivity in binary silicate glasses. J Non Cryst Sol. 2006;352:2173–9.

    Article  Google Scholar 

  45. Liška M, Macháček J, Perichta P, Gedeon O, Pilát J. Thermochemical modeling and molecular dynamics simulations of calcium aluminate glasses. Ceram Silik. 2008;52:61–5.

    Google Scholar 

  46. Greaves GN, Sen S. Inorganic glasses, glass-forming liquids and amorphizing solids: a review. Adv Phys. 2007;56:1–166.

    Article  CAS  Google Scholar 

  47. Šesták J, Koga N, Strnad Z. Non-bridging oxygen in silica biocompatible glass ceramics and magnetic properties of Fe2O3 added borates. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral properties of materials accentuating non-crystalline states, Plzeň: OPS-ZČU; 2009. pp. 354–386 (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz).

  48. Nishida T, Oku H. Local structure and chemical durability of FeOOH-fixed sodium silicate glass prepared from water glass. J Radioanal Nucl Chem. 2002;253:303–6.

    Article  CAS  Google Scholar 

  49. Tsai MS, Huang PY, Yang CH. Formation mechanism of colloidal silica via sodium silicates. J Nanopart Res. 2006;8:943–9.

    Article  CAS  Google Scholar 

  50. Gianopoulosu I, Pantas D. Hydrolitic stability of sodium silicite gels in the presence of aluminium. J Mater Sci. 2011;45:5370–7.

    Article  Google Scholar 

  51. Hench LL. Glasses and genes: a forecast for the future. Glastech Ber Glass Sci Tech. 1997;70:439–48.

    Google Scholar 

  52. Hench LL. Life and death: the ultimate phase transformation. Thermochim Acta. 1996;280/281:1–14.

    Article  CAS  Google Scholar 

  53. Strnad Z, Šesták J. Biocompatible glass-ceramics. Invited lecture at the 2nd international conference on intelligent processing and manufacturing of materials, Honolulu; 1999. pp. 123–129.

  54. Koga N, Strnad Z, Šesták J. Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics for bone tissue substitution. J Thermal Anal Calorim. 2003;71:927–41.

    Article  CAS  Google Scholar 

  55. Šesták J, Strnad Z, Strnad J, Holeček M, Koga N. Biomedical thermodynamics and implantology aspects of biocompatible glass-ceramics and otherwise modified inorganic materials and surfaces. Advanced Mater Res. 2008;39(40):329–42.

    Google Scholar 

  56. Strnad Z, Strnad J. Physicochemical properties, healing capacity of inorganic endosteal biomaterials used for mimetic bone substitution in implantology. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral properties of materials accentuating non-crystalline states, Plzeň: OPS-ZČU; 2009. pp. 538–584 (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz).

  57. MacKenzie KJD, Rahner N, Smith ME, Wong A. Calcium-containing inorganic polymers as potential bioactive materials. J Mater Sci. 2010;45:999–1007.

    Article  CAS  Google Scholar 

  58. Granizo ML, Alonso S, Blanco-Varela MT, Martinaz-Ramirez S. Alkali activation of metakaolin: parameters affecting mechanical, structural and microstructural properties. J Mater Sci. 2007;42:2934–43.

    Article  CAS  Google Scholar 

  59. Duxson P, Provis JL, Lukey GC, Seaprovic P, van Deventer JSJ. Si-NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir. 2005;21:3028–37.

    Article  CAS  Google Scholar 

  60. Wagh AS, Jeong SY. Chemically bonded phosphate ceramics: dissolution model of formation. J Am Ceram Soc. 2003;86:1838–44.

    Article  CAS  Google Scholar 

  61. Wagh AS. Chemically bonded phosphate ceramics: a 21st century materials with diverse application. Amsterdam: Elsevier; 2004 (ISBN: 0-08-044505-5).

  62. Wagh AS. Phosphate geopolymeric materials. Invited lecture at the 35th international conference on advanced ceramics and composites, Dayton; 2011.

  63. Gomes KC, Lima GST, Torres SM. Iron distribution in geopolymers with ferromagnetic rich precursor in functional and structural materials. Book Ser Mater Sci Forum. 2010;643:131–8.

    Article  CAS  Google Scholar 

  64. Granizo ML, Alonso S, Blanco-Varela MT, Martinaz-Ramirez S. Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J Am Cer Soc. 2002;85:225–31.

    Article  CAS  Google Scholar 

  65. Poděbradská J, Černý J, Drchalová J, Rovnaníková P, Šesták J. Analysis of glass fiber reinforced cement composites regarding their thermal and hygric/moist material parameters. J Thermal Anal Calorim. 2004;77:85–97.

    Article  Google Scholar 

  66. Foller B. Systematic classification of pultrusion technology. In proc Polym Compos. Plzeň: JECMAGAZINE ZČU; 2011. pp. 22–26.

  67. Deak T, Czigany T, Marsalkova M, Militký J. Manufacturing and testing of long basalt fiber rein forcing thermoplastic matrix composites. Polym Eng Sci. 2010;50:2448–56.

    Article  CAS  Google Scholar 

  68. Militký J, Kovačič V, Křemenáková D. Basalt filaments—properties and applications. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. Plzeň: OPS-ZČU, pp. 499–520.

  69. Foller B, Šesták J. Composite geopolymers and their research study at NTC laboratory for rheological and thermal research. In: Dubaj T, Cibulková Z, editors. The proceedings of the 3rd joint Czech–Hungarian–Polish–Slovak thermoanalytical conference—TERMANAL. Bratislava: Slovak Chemical Society; 2011. p. SL7

  70. Šesták J. Use of phenomenological enthalpy versus temperature diagram (and its derivative-DTA) for a better understanding of transition phenomena in glasses. Thermochim Acta. 1996;280/281:175–90.

    Google Scholar 

  71. Wunderlich B. Glass transition as a key to identifying solid phases. J Appl Polym Sci. 2007;105:49–59.

    Article  CAS  Google Scholar 

  72. Wunderlich B. The three reversible crystallization and melting processes of semicrystalline macromolecules. Thermochim Acta. 2001;396:33–41.

    Article  Google Scholar 

  73. Queiroz C, Šesták J. Aspects of the non-crystalline state. Phys Chem Glasses Eur J Glass Sci Technol B. 2010;51:165–72.

    CAS  Google Scholar 

  74. Hutchinson JM. Determination of the glass transition temperature: methods correlation and structural heterogeneity. J Therm Anal Calorim. 2009;98:11–579.

    Article  Google Scholar 

  75. Kozmidis-Petrovic A, Šesták J. Forty years of the Hrubý glass-forming coefficient via DTA when comparing other criteria in relation to the glass stability and vitrification ability. J Thermal Anal Calorim; 2012. doi:10.1007/s10973-011-1926-6 (in press).

  76. Duxson P, Provis JL, Lukey GC. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf Phys Chem Eng Asp. 2005;269:47–58.

    Article  CAS  Google Scholar 

  77. Provis JL, Duxson P, van Deventer JSJ. The role of mathematical modeling and gel chemistry in advancing geopolymer technology. Chem Eng Res Des. 2005;83:853–60.

    Article  CAS  Google Scholar 

  78. Conrad CF, Icopini GA, Yasubara H, Nandstra JZ, Brantly SL. Modeling of kinetics of nanaocolloid formation and precipitation of silica in geologically relevant aqueous solutions. Geochem Cosmochim Acta. 2007;71:531–42.

    Article  CAS  Google Scholar 

  79. White CE, Provis JL, Proffen T. Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. J Phys Chem C. 2011;115:9879–88.

    Article  CAS  Google Scholar 

  80. Foller B. Dynamic mechanical analysis of composites with a defined magnetic permeability. In: Proc Polym Compos. Plzeň: JECMAGAZINE, ZČU; 2011, pp. 7–10.

  81. Feng D, Tan H, Van Deventer JSJ. Ultrasound enhanced geopolymerisation. J Mater Sci. 2004;39:571–80.

    Article  CAS  Google Scholar 

  82. Iler RK. The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. New York: Wiley; 1979 (ISBN 0-471-02404-X).

  83. Devison B. The origin of precious opal: a new model. Aust Gemmol. 2004;22:50–8.

    Google Scholar 

  84. Williams LA, Crerar DA. Silica diagenesis, I. Solubility controls. J Sedim Petrol. 1985;55:301–11.

    CAS  Google Scholar 

  85. Williams LA, Crerar DA. II. General mechanisms. J Sedim Petrol. 1985;55:312–21.

    Google Scholar 

  86. Thomas P, Heide K, Šesták J, Šimon P (2009) Properties of some natural glasses: Australian opals and Czech tektite Moldavites. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states, Plzeň: OPS-ZČU; 2009. pp. 200–248 (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz).

  87. Thomas P, Šesták J, Heide K, Füeglein E, Šimon P. Thermal properties of Australian sedimentary opals and Czech Moldavites. J Therm Anal Calorim. 2010;99:861–7.

    Article  CAS  Google Scholar 

  88. Kozuka H, editor. Handbook of sol-gel science and technology, I: sol-gel processing. Almeida RM, editor. II: Characterization of sol-gel materials and products and Sakka S, editor. III: Applications of sol-gel technology. Berlin: Springer; 2005 (ISBN 978-1-4020-7969-6).

  89. Perry CC, Keeling TT. Biosolidification: the role of the organic matrix in structure control. J Biolog Inorg Chem. 2000;5:537–50.

    Article  CAS  Google Scholar 

  90. Kim D, Petrisor IG, Yen TFY. Geopolymerizartion of biopolymers: a preliminary inquiry. Carbohyd Polym. 2004;56:213–7.

    Article  CAS  Google Scholar 

  91. Kim D, Lai H-T, Chilingar GV, Yen TFY. Geopolymer formation and its unique properties. Environ Geol. 2006;51:103–11.

    Article  CAS  Google Scholar 

  92. Coradin T, Livage J. Aqueous silicates in biological sol-gel applications: new perspective of old precursors. Acta Chem Res. 2007;40:819–26.

    Article  CAS  Google Scholar 

  93. Granja PL, Barbosa MA, Pouysegu L, de Joso B, Rouvais F, Baquey C. Cellulose phosphates and biomaterials, mineralization of chemically modified regenerated cellulose hydrogels. J Mater Sci. 2011;36:2163–72.

    Article  Google Scholar 

  94. Zámečník J, Bilavčík A, Faltus M, Šesták J. Water state in plants at low and ultra-low temperatures. CryoLetters 2003;24:412.

    Google Scholar 

  95. Šesták J, Zámečník J. Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological glasses exposed to ultra-low Temperatures. J Thermal Anal Calorim. 2007;88:411–6.

    Article  Google Scholar 

  96. Zámečník J, Šesták J. Biological glasses and their formation during overwintering and cryopreservation of plants. In: Šesták J, Holeček M, Málek J, editors. Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. Plzeň: OPS-ZČU; 2009. pp. 176–198 (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz).

  97. Šesták J, Mareš JJ, Hubik P, editors. Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. Berlin: Springer; 2011 (ISBN 978-90-481-2881-5).

  98. Provis JL, Lukey GC, van Deventer JSJ. Do geopolymers actually contain nanocrystalline zeolites? Chem Mater. 2005;17:3075–85.

    Article  CAS  Google Scholar 

  99. Zhang J, Provis JL, Feng D, Van Jannie JSJ. Geopolymers for immobilization of heavy metals. J Hazard Mater. 2008;157:587–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been carried out by NTC ZČU Pilsen under the support of the Project No. FR-TI 1/335 “Geopolymeric composites with high technical parameters” provided by the Ministry of Industry and Business of the Czech Republic and within the CENTEM Project, No. CZ.1.05/2.1.00/03.0088 that is co-funded from the ERDF within the OP RDI program of the Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Šesták.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šesták, J., Foller, B. Some aspects of composite inorganic polysialates. J Therm Anal Calorim 108, 511–517 (2012). https://doi.org/10.1007/s10973-011-2037-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2037-0

Keywords

Navigation