Skip to main content
Log in

Calorimetric analysis of dysprosia and dysprosia-doped zirconia ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dysprosia (Dy2O3) and dysprosia-doped ZrO2 (~10 wt% Dy2O3) samples were subjected to calorimetric and thermal analyses to understand the effect of dysprosia doping on the thermal properties of ZrO2 and to compare the thermal conductivity of dysprosia-doped ZrO2 (DySZ) to standard 7YSZ (7 wt% Y2O3 in ZrO2). All doped samples were plasma sprayed and subsequently sintered to ensure material densification (reduced porosity for bulk property analysis) and sufficient diffusion of constituents throughout the samples. Differential scanning calorimetry was used to measure the specific heat capacity values for powder and sintered samples as a function of temperature. The thermal conductivities of sintered samples were measured using laser flash techniques. The results showed that the addition of dysprosia to ZrO2 has lowered both the specific heat capacity and thermal diffusivity when compared to the standard 7YSZ. The resulting thermal conductivity of DySZ was 75% lower than that of 7YSZ under the sintered condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chevalier J, Gremillard L. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2000;92(9):1901–20.

    Article  Google Scholar 

  2. Maier RD, Scheuermann CM, Andrews CW. Degradation of a two-layer thermal barrier coating under thermal cycling. Am Ceram Soc Bull. 1981;60(55):555–60.

    CAS  Google Scholar 

  3. Klemens PG. Theory of lattice thermal conductivity: role of low-frequency phonons. Int J Thermophys. 1990;2(1):55–63.

    Article  Google Scholar 

  4. Tsipas SA. Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. J Eur Ceram Soc. 2010;30:61–72.

    Article  CAS  Google Scholar 

  5. Suresh A, Mayo M, Porter W. Thermodynamics of the tetragonal-to-monoclinic-phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. J Mater Res. 2003;18:2912–21.

    Article  CAS  Google Scholar 

  6. Miller RA, Smialek JL, Garlick RG. Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. In: Heuer AH, Hobbs LW, editors. Advances in ceramics, science and technology of zirconia I. Columbus, OH: American Ceramic Society; 1981. p. 241–53.

    Google Scholar 

  7. Wu J, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating-applications. J Am Ceram Soc. 2002;85(12):3031–5.

    Article  CAS  Google Scholar 

  8. Miyazaki H. The effect of TiO2 additives on the structural stability and thermal properties of yttria stabilized zirconia. J Therm Anal Calorim. 2009;98:343–6.

    Article  CAS  Google Scholar 

  9. Klemens PG, Gell M. Thermal conductivity of thermal barrier coatings. Mater Sci Eng. 1998. doi:10.1016/S0921-5093(97)00846-0.

  10. Chi W, Sampath S. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J Am Ceram Soc. 2008;91:2636–45.

    Article  CAS  Google Scholar 

  11. Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci. 2001;36:3003–10.

    Article  CAS  Google Scholar 

  12. Swain RA. Thermodynamics of solids. New York, NY: Wiley; 1972.

    Google Scholar 

  13. Klemens PG. Effective thermal conductivity of a matrix with two kinds of inclusions. Int J Thermophys. 1996;17(4):979–81.

    Article  CAS  Google Scholar 

  14. Cullity BD. Elements of X-ray diffraction. 2nd ed. Ontario: Addison-Wesley Publishing Company; 1978.

    Google Scholar 

  15. Jang BK, Matsubara H. Influence of porosity on thermophysical properties of nano-porous zirconia coatings grown by electron beam-physical vapor deposition. Scr. Mater. 2006; doi:10.1016/j.scriptamat.2006.01.005.

  16. Kubaschewski O, Alcock CB. Metallographic thermochemistry. London: Pergamon Press; 1979.

    Google Scholar 

  17. Zurkadaev A, Huang X, Wang DM. Phase transformation and thermal properties of ternary thermal barrier coating materials. J Alloy Compd. 2010;488:469–78.

    Google Scholar 

  18. Tien TY, Subbarao EC. X-ray and electrical conductivity study of the fluorite phase in the system of ZrO2-CaO. J Chem Phys. 1963;39(4):1041–8.

    Article  CAS  Google Scholar 

  19. Scott HG. Phase relationships in the zirconia–yttria system. J Mater Sci. 1975;10:1527–35.

    Article  CAS  Google Scholar 

  20. Jang BK, Sakka Y, Matsubara H. Young’s modulus and thermal conductivity of nanoporous YSZ coatings fabricated by EB-PVD. Ceram Eng Sci Proc 2009. doi:10.1002/9780470456323.ch12.

Download references

Acknowledgements

We would like to acknowledge the continued support from the National Research Council (NRC) Canada, in particular contributions from M. Lamontagne at the Industrial Materials Institute (IMI). Funding for this research was provided by the Natural Sciences and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Romualdez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romualdez, J., Huang, X., Kearsey, R. et al. Calorimetric analysis of dysprosia and dysprosia-doped zirconia ceramics. J Therm Anal Calorim 110, 1061–1067 (2012). https://doi.org/10.1007/s10973-011-2033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2033-4

Keywords

Navigation