Skip to main content
Log in

Exploring antibiotic resistance based on enzyme hydrolysis by microcalorimetry

Part IV. Determination of thermokinetic parameters of D-Ala-D-Ala hydrolysis with dipeptidase VanX

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In an effort to explore antibiotic resistance based on enzyme hydrolysis, the thermodynamic parameters of the D-Ala-D-Ala hydrolysis catalyzed by dipeptidase VanX and occurred in Gram-positive vancomycin-resistant pathogens were determined by microcalorimetry. The values of activation free energy \( \Updelta G_{ \ne }^{\theta } \) are 87.140 ± 0.055, 88.413 ± 0.067, 89.611 ± 0.051, and 90.823 ± 0.042 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy \( \Updelta H_{ \ne }^{\theta } \) is 15.332 ± 0.006 kJ mol−1, activation entropy \( \Updelta S_{ \ne }^{\theta } \) is −245.02 ± 0.20 J mol−1 K−1, apparent activation energy E is 17.830 kJ mol−1, and the reaction order is 1.5. These thermodynamic data reveal that D-Ala-D-Ala hydrolysis with VanX is an exothermic and spontaneous reaction and has an approximative reaction rate with the imipenem hydrolysis with metallo-β-lactamase ImiS in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Williams DH, Bardsley B. The vancomycin group of antibiotics and the fight against resistant bacteria. Angew Chem. 1999;38(9):1172–93.

    Article  Google Scholar 

  2. Evers S, Quintiliani R, Courvalin P. Genetics of glycopeptide resistance in Enterococci. Microb Drug Resist. 1996;2(2):219–23.

    Article  CAS  Google Scholar 

  3. Walsh CT, Fisher SL, Park IS, Prahalad M, Wu Z. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol. 1996;3(1):21–8.

    Article  CAS  Google Scholar 

  4. Walsh CT. Vancomycin resistance: decoding the molecular logic. Science. 1993;261:308–9.

    Article  CAS  Google Scholar 

  5. Arthur M, Reynolds PE, Depardieu F, Evers S, Dutka-Malen S, Quintiliani R, Courvalin P. Mechanisms of glycopeptide resistance in Enterococcus. J Infect. 1996;32(1):11–6.

    Article  CAS  Google Scholar 

  6. Fan C, Moews PC, Walsh CT, Knox JR. Vancomycin resistance: structure of D-alanine: D-alanine ligase at 2.3 Å resolution. Science. 1994;266:439–43.

    Article  CAS  Google Scholar 

  7. Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991;30(43):10408–15.

    Article  CAS  Google Scholar 

  8. Holman TR, Wu Z, Wanner BL, Walsh CT. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry. 1994;33(15):4625–31.

    Article  CAS  Google Scholar 

  9. Haldimann A, Fisher SL, Daniels LL, Walsh CT, Wanner BL. Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS–VanR two component regulatory system in Escherichia coli K-12. J Bacteriol. 1997;179(18):5903–13.

    CAS  Google Scholar 

  10. Reynolds PE, Depardieu F, Dutka-Malen S, Arthur M, Courvalin P. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol Microbiol. 1994;13(6):1065–70.

    Article  CAS  Google Scholar 

  11. Wu Z, Wright GD, Walsh CT. Overexpression, purification, and characterization of VanX, a D,D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry. 1995;34(8):2455–63.

    Article  CAS  Google Scholar 

  12. Lessard IAD, Walsh CT. VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function. Proc Natl Acad Sci. 1999;96(20):11028–32.

    Article  CAS  Google Scholar 

  13. Wu Z, Walsh CT. Dithiol compounds: potent, time-dependent inhibitors of VanX, a zinc-dependent D,D-dipeptidase required for vancomycin resistance in Enterococcus faecium. J Am Chem Soc. 1996;118(7):1785–6.

    Article  CAS  Google Scholar 

  14. Yang KW, Cheng X, Zhao C, Liu CC, Jia C, Feng L, Xiao JM, Zhou LS, Gao HZ, Yang X, Zhai L. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2011.09.020.

  15. Kohutova A, Honcova P, Podzemna V, Bezdicka P, Vecernikova E, Louda M, Seidel J. Thermal analysis of kidney stones and their characterization. J Therm Anal Calorim. 2010;101(2):695–9.

    Article  CAS  Google Scholar 

  16. Cooper A. Microcalorimetry of heat capacity and volumetric changes in biomolecular interactions-the link to solvation. J Therm Anal Calorim. 2011;104(1):69–73.

    Article  CAS  Google Scholar 

  17. Budrugeac P, Emandi A. The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood. J Therm Anal Calorim. 2010;101(3):881–6.

    Article  CAS  Google Scholar 

  18. Budrugeac P, Cucos A, Miu L. The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. J Therm Anal Calorim. 2011;104(2):439–50.

    Article  CAS  Google Scholar 

  19. Kong W, Li Z, Xiao X, Zhao Y, Zhang P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102(1):331–6.

    Article  CAS  Google Scholar 

  20. Yang L, Sun L, Xu F, Zhang J, Zhao J, Zhao Z, et al. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100(2):589–92.

    Article  CAS  Google Scholar 

  21. Iafisco M, Foltran I, Foggia MD, Bonora S, Roveri N. Calorimetric and Raman investigation of cow’s milk lactoferrin. J Therm Anal Calorim. 2011;103(1):41–7.

    Article  CAS  Google Scholar 

  22. Gao HZ, Yang Q, Yan XY, Wang ZJ, Feng JL, Yang X, et al. Exploring antibiotic resistant mechanism by microcalorimetry: determination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis. J Therm Anal Calorim. 2011; doi:10.1007/s10973-011-1362-7.

  23. Yang X, Feng L, Xu KZ, Gao HZ, Jia C, Liu CC, Xiao JM, et al. Exploring antibiotic resistant mechanism by microcalorimetry II: determination of thermokinetic parameters of imipenem hydrolysis with metallo-β-lactamase ImiS. J Therm Anal Calorim. 2011; doi:10.1007/s10973-011-1844-7.

  24. McCafferty DG, Lessard IAD, Walsh CT. Mutational analysis of potential zinc-binding residues in the active site of the Enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry. 1997;36(34):10498–505.

    Article  CAS  Google Scholar 

  25. Breece RM, Costello A, Bennett B, et al. A five-coordinate metal center in Co (II)-substituted VanX. J Biol Chem. 2005;280(12):11074–81.

    Article  CAS  Google Scholar 

  26. Marthada VK. The enthalpy of solution of SRM 1655(KCl) in H2O. J Res Nat Bur Stand. 1980;85(6):467–71.

    Article  Google Scholar 

  27. Ditmars DA, Ishihara S, Chang SS. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res N at l Bur Stand. 1982;87:159–63.

    Article  CAS  Google Scholar 

  28. Gao SL, Chen SP, Hu RZ, Li HY, Shi QZ. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 2002;18(4):362–6.

    CAS  Google Scholar 

  29. Yan XY, Gao HZ, Feng JL, Yang X, Cheng X, Jia C, Yang KW. Wild-type and Co (II) substituted metallo-β-lactamase L1: spectroscopic characterization and kinetic studies of catalyzing antibiotic hydrolysis. Chin J Antibiotic. 2011;36(5):388–93.

    CAS  Google Scholar 

  30. Feng JL, Yang X, Yan XY, Gao HZ, Wu D, Yang KW. Expression, purification of ImiS and kinetic studies on hydrolysis of three types of β-lactam antibiotics catalyzed by ImiS. Chin J Antibiotic. 2011;36(3):197–200.

    CAS  Google Scholar 

  31. Yang Y, Rasmussen BA, Bush K. Biochemical characterization of the metallo-β-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob Agents and Chemother. 1992;36(5):1155–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Michael Crowder at Miami University for providing the plasmid pIADL14 for expression of MBP-VanX. This study was supported by grants (to K. W. Y) from National Natural Science Fund of China (20972127), Doctoral Fund of China (200806970005), Natural Science Fund of Shaanxi Province (2009JM2002), and Key Fund for International Cooperation of Shaanxi Province (2010KW-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Wu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CC., Zhao, XB., Yang, KW. et al. Exploring antibiotic resistance based on enzyme hydrolysis by microcalorimetry. J Therm Anal Calorim 111, 1663–1667 (2013). https://doi.org/10.1007/s10973-011-2010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2010-y

Keywords

Navigation