Skip to main content

Crystallization behavior of Mg–Cu–Y amorphous alloy


Amorphous Mg61Cu24Y15 ribbons were manufactured by melt-spinning at wheel speeds in the range 5–20 ms−1. The crystallization behavior of amorphous ribbons was investigated by a combination of differential scanning calorimetry (DSC) and X-ray diffractometry. DSC measurements showed that the amorphous ribbons exhibit distinct glass transition temperature and wide supercooled liquid region before crystallization. During continuous heating three exothermic peaks and two endothermic peaks were observed. The characteristic thermodynamic parameters such as T g, T x , ΔT x , and T rg are around 432–439, 478–485, 46–54 K, and 0.55–0.56, respectively. Isothermal annealing DSC traces for this amorphous alloy, the first crystallization peak showed a clear incubation period and Avrami exponent was found to be 2.30–2.74, which indicate that the transformation reaction involved nucleation and three-dimensional diffusion controlled growth. Mechanical properties of the as-quenched and subsequently annealed ribbons were examined by Vickers microhardness (HV) measurements. Results showed that microhardness of the as-quenched ribbons were about 309 HV. However, the results also showed that microhardness of the rapidly solidified ribbons increases with the increasing temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Kim SG, Inoue A, Masumoto T. High mechanical strengths of Mg–Ni–Y and Mg–Cu–Y amorphous-alloys with significant supercooled liquid region. Mater Trans JIM. 1990;31:929–34.

    CAS  Google Scholar 

  2. Inoue A, Kato A, Zhang T, Kim SG, Masumoto T. Mg–Cu–Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans JIM. 1991;32:609–16.

    CAS  Google Scholar 

  3. Inoue A, Masumoto T. Production and properties of light-metal-based amorphous-alloys. Mater Sci Eng A. 1991;133:6–9.

    Article  Google Scholar 

  4. Inoue A, Masumoto T. Mg-based amorphous-alloys. Mater Sci Eng A. 1993;173:1–8.

    Article  Google Scholar 

  5. Busch R, Liu W, Johnson WL. Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J Appl Phys. 1998;83:4134–41.

    Article  CAS  Google Scholar 

  6. Madge SV, Greer AL. Effect of Ag addition on the glass-forming ability and thermal stability of Mg–Cu–Y alloys. Mater Sci Eng A. 2004;375:759–62.

    Article  Google Scholar 

  7. Lee PY, Lo C, Jang JSC. Consolidation of mechanically alloyed Mg49Y15Cu36 powders by vacuum hot pressing. J Alloys Comp. 2007;434:354–7.

    Article  Google Scholar 

  8. Lee PY, Kao MC, Lin CK, Huang JC. Mg–Y–Cu bulk metallic glass prepared by mechanical alloying and vacuum hot-pressing. Intermetallics. 2006;14:994–9.

    Article  CAS  Google Scholar 

  9. Linderoth S, Pryds NH, Ohnuma M, Pedersen AS, Eldrup M, Nishiyama N, Inoue A. On the stability and crystallisation of bulk amorphous Mg–Cu–Y–Al alloys. Mater Sci Eng A. 2001;304:656–9.

    Article  Google Scholar 

  10. Cheng YT, Hung TH, Huang JC, Jang JSC, Tsao JA, Lee PY. Effects of partial replacement of Cu and Y by B in Mg–Cu–Y amorphous alloys. Intermetallics. 2006;14:866–70.

    Article  CAS  Google Scholar 

  11. Murty BS, Hono K. Formation of nanocrystalline particles in glassy matrix in melt-spun Mg–Cu–Y based alloys. Mater Trans JIM. 2000;41:1538–44.

    CAS  Google Scholar 

  12. Lu ZP, Tan H, Li Y, Ng SC. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater. 2000;42:667–73.

    Article  CAS  Google Scholar 

  13. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  14. Patel AT, Pratap A. Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2011; doi:10.1007/s10973-011-1549-y.

  15. Gun B, Laws KJ, Ferry M. Static and dynamic crystallization in Mg–Cu–Y bulk metallic glass. J Non-Cryst Solids. 2006;352:3887–95.

    Article  CAS  Google Scholar 

  16. Pryds N, Eldrup M, Pedersen AS. In: Proceedings of the 22nd Riso international symposium on materials science. Science of metastable and nanocrystalline alloys structure, properties and modelling. Roskilde, Denmark: Riso National Laboratory; 2001. p. 377–82.

  17. Chen LC, Spaepen F. Analysis of calorimetric measurements of grain-growth. J Appl Phys. 1991;69:679–85.

    Article  CAS  Google Scholar 

  18. Du YL, Li W, Deng YH, Xu F. Effects of gaseous hydrogenation on crystallization behavior of melt-spun Mg63Pr15Ni22 amorphous ribbons. J Therm Anal Calorim. 2010;99:191–5.

    Article  CAS  Google Scholar 

  19. Sidel SM, Santos FA, Gordo VO, Idalgo E, Monteiro AA, Moraes JCS, Yukimitu K. Avrami exponent of crystallization in tellurite glasses. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1312-4.

  20. Christian JW. The theory of transformations in metals and alloys, Part I. Oxford: Pergamon Press; 1957.

    Google Scholar 

  21. Soubeyroux JL, Puech S. Phases formation during heating of Mg–Cu–Ag–Y bulk metallic glasses. J Alloys Compd. 2010;495:330–3.

    Article  CAS  Google Scholar 

  22. Gogebakan M, Uzun O, Karaaslan T, Keskin M. Rapidly solidified Al-6.5 wt% Ni alloy. J Mater Process Technol. 2003;142:87–92.

    Article  CAS  Google Scholar 

  23. Gang C, Ferry M. Crystallization of Mg-based bulk metallic glass. Trans Nonferrous Met Soc China. 2006;16:833–7.

    Article  Google Scholar 

  24. Perez P, Garces G, Gonzalez S, Nitsche H, Sommer F, Adeva P. Change in mechanical properties during crystallization of amorphous Mg83Ni9Y8. Mater Sci Eng A. 2007;462:211–4.

    Article  Google Scholar 

  25. Wolff U, Pryds N, Johnson E, Wert JA. The effect of partial crystallization on elevated temperature flow stress and room temperature hardness of a bulk amorphous Mg60Cu30Y10 alloy. Acta Mater. 2004;52:1989–95.

    Article  CAS  Google Scholar 

Download references


We would like to thank Kahramanmaras Sutcu Imam University for financial support of the research program (Project No: 2010/3-11).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Baris Avar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gogebakan, M., Karteri, I., Avar, B. et al. Crystallization behavior of Mg–Cu–Y amorphous alloy. J Therm Anal Calorim 110, 793–798 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Magnesium alloys
  • Rapid solidification
  • Crystallization
  • Hardness measurement