Skip to main content
Log in

Studies on ignition and afterburning processes of KClO4/Mg pyrotechnics heated in air

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior of KClO4/Mg pyrotechnic mixtures heated in air was investigated by thermal analysis. Effects of oxygen balance and heating rates on the TG–DSC curves of mixtures were examined. Results showed that DSC curves of the mixtures had two exothermic processes when heated from room temperature to 700 °C, and TG curve exhibited a slight mass gain followed by a two-stage mass fall and then a significant mass increase. The exothermic peak at lower temperature and higher temperature corresponded to the ignition process and afterburning process, respectively. Under the heating rate of 10 °C min−1, the peak temperatures for ignition and afterburning process of stoichiometric KClO4/Mg (58.8/41.2) was 543 and 615 °C, respectively. When Mg content increased to 50%, the peak ignition temperature decreased to 530 °C, but the second exothermic peak changed little. Reaction kinetics of the two exothermic processes for the stoichiometric mixture was calculated using Kissinger method. Apparent activation energies for ignition and afterburning process were 153.6 and 289.5 kJ mol−1, respectively. A five-step reaction pathway was proposed for the ignition process in air, and activation energies for each step were also calculated. These results should provide reference for formula design and safety storage of KClO4/Mg-containing pyrotechnics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conkling JA. Chemistry of pyrotechnics: basic principles and theory. New York: Marcel Dekker Inc.; 1985.

    Google Scholar 

  2. Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.

    Article  CAS  Google Scholar 

  3. Hosseini SG, Pourmortazavi SM, Hajimirsadeghi SS. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 2005;141:322–6.

    Article  CAS  Google Scholar 

  4. Lee JS, Hsu CK. The DSC studies on the phase transition, decomposition and melting of potassium perchlorate with additives. Thermochim Acta. 2001;367–368:367–70.

    Article  Google Scholar 

  5. Barišin D, Haberle IB. Aging of pyrotechnic compositions. The investigation of chemical changes by IR spectroscopy and x-ray diffraction. Propellant Explos Pyrotech. 1989;14:162–9.

    Article  Google Scholar 

  6. Tuukkanen IM, Charsley EL, Laye PG, Rooney JJ, Griffiths TT, Lemmetyinen H. Pyrotechnic and thermal studies on the magnesium-strontium nitrate pyrotechnic system. Propellant Explos Pyrotech. 2006;31:110–5.

    Article  CAS  Google Scholar 

  7. Tuukkanen IM, Brown SD, Charsle EL, Goodall SJ, Rooney JJ, Griffith TT, Lemmetyinen H. Studies on the ageing of a magnesium-strontium nitrate pyrotechnic composition using isothermal microcalorimetry and thermal analysis techniques. Thermochim Acta. 2004;417:223–9.

    Article  CAS  Google Scholar 

  8. Knowlton GD, Ludwig CP. Low temperature autoignition composition. US Patent, 6479702, 2004.

  9. Krone U. Pyrotechnical mixture for producing a smoke screen. US Patent, 4968365, 1990.

  10. Salzano E, Basco A, Cammarota F. Confined after-burning of display pyrotechnics and explosives. In: 32nd Combustion meeting, Napoli (IT), 2009.

  11. Donhaue L, Pegg MJ, Zhang F. Afterburning of TNT detonation products in air. In: Seventh international symposium on hazards, prevention, and mitigation of industrial explosives (7th ISGHPMIE). St. Petersburg, Russia, 2008.

  12. Basco A, Salzano E. The risk of storage plant of pyrotechnics. Chem Eng Trans. 2010;19:231–6.

    Google Scholar 

  13. Pourmortazavi SM, Fathollahi M, Hajimirsadeghi SS, Hosseini SG. Thermal behavior of aluminum powder and potassium perchlorate mixtures by DTA and TG. Thermochim Acta. 2006;443:129–31.

    Article  CAS  Google Scholar 

  14. Sharma TP, Varshney VS, Kumar S. Products of combustion of the metal powders. Fire Sci Technol. 1992;12:29–38.

    Article  CAS  Google Scholar 

  15. Ravindran N, Chattopadhyay DK, Zakula A, Battocchi D, Webster DC, Bierwagen GP. Thermal stability of magnesium-rich primers based on glycidyl carbamate resins. Polym Degrad Stab. 2010;95:1160–6.

    Article  CAS  Google Scholar 

  16. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008;87:244–51.

    Article  CAS  Google Scholar 

  17. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  18. Barral L, Cano J, Lopez J, Lopez-Bueno I, Nogueira P, Ramirez C, et al. Thermogravimetric study of tetrafunctional/phenol novolac epoxy mixtures cured with a diamine. J Therm Anal Calorim. 1998;51:489–501.

    CAS  Google Scholar 

  19. Chrissafis K. Kinetics of thermal degradation of polymers-Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  20. Gao M, Wu W, Yan Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95:605–8.

    Article  CAS  Google Scholar 

  21. Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stab. 2007;92:1265–78.

    Article  CAS  Google Scholar 

  22. Boey FYC, Qiang W. Experimental modeling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer. 2000;41:2081–94.

    Article  CAS  Google Scholar 

  23. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  24. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Appl Polym Sci B. 1966;4–5:323–8.

    Article  Google Scholar 

  25. Shih TS, Wang JH, Chong KZ. Combustion of magnesium alloys in air. Mater Chem Phys. 2004;2–3:302–9.

    Google Scholar 

  26. Tribelhorn MJ, Venables DS, Brown ME. Combustion of some zinc-fuelled binary pyrotechnic systems. Thermochim Acta. 1995;256:309–24.

    Article  CAS  Google Scholar 

  27. Lee JS, Hsu CK. The effect of different zirconium on thermal behaviors for Zr/KClO4 priming composition. Thermochim Acta. 2001;367–368:375–9.

    Article  Google Scholar 

  28. Solymosi F. Structure and stability of salts of halogen oxyacids in the solid phase. New York: Wiley; 1977.

  29. Mclain JH. Pyrotechnics from the viewpoint of solid state chemistry. Philadelphia: Franklin Institute; 1980, p. 20.

Download references

Acknowledgements

The authors would like to acknowledge the support of National High Technology Development Program of China under Grant No. 2009AA8043022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, X., Zhang, J., Zhang, Q. et al. Studies on ignition and afterburning processes of KClO4/Mg pyrotechnics heated in air. J Therm Anal Calorim 109, 1333–1340 (2012). https://doi.org/10.1007/s10973-011-1991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1991-x

Keywords

Navigation