Skip to main content
Log in

Thermoanalytical studies of oxovanadium(IV)hydroxamate complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behavior of oxovanadium(IV)hydroxamate complexes of composition [VO(acac)(C6H5C(O)NHO)] (I), [VO(C6H5C(O)NHO)2] (II), [VO(acac)(4-ClC6H4C(O)NHO)] (III), [VO(4-ClC6H4C(O)NHO)2] (IV) (where acac = (CH3COCHCOCH3 ) synthesized from the reactions of VO(acac)2 with equi- and bimolar amounts of potassium benzohydroxamate and potassium 4-chlorobenzohydroxamate in THF + MeOH solvent medium has been studied by TG and DTA techniques. TG curves indicated that complexes I, II, and IV undergo decomposition in single step to yield VO2 as the final residue, while complex III decomposes in two steps to yield VO(acac) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stability for the complexes has been inferred as IV > I > III > II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Dipankar M, Jaromir M, Sheldrick WS, Mayer-figge H, Mahammad A. Synthesis, crystal structures and catalytic oxidation of aromatic hydrocarbons by oxovanadium(V) complexes of aminebis(phenolate) ligands. J Mol Catal A: Chem. 2007;270:153–9.

    Article  Google Scholar 

  2. Maurya MR, Kumar U, Manikandan P. Polymer supported vanadium and molybdenum complexes as potential catalysts for the oxidation and oxidative bromination of organic substrates. Dalton Trans. 2006;3561–75

  3. Zhang W, Basak A, Kosugi Y, Hoshino Y, Yamamoto H. Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: an effective controller system and a rational mechanistic model. Angew Chem Int Ed. 2005;44:4389–91.

    Article  CAS  Google Scholar 

  4. Zhang W, Yamamoto H. Vanadium-catalyzed asymmetric epoxidation of homoallylic alcohols. J Am Chem Soc. 2007;129:286–7.

    Article  CAS  Google Scholar 

  5. Hirao T, Fujii T, Tanaka T, Ohshiro Y. A novel regioselective ring-opening oxidation of cyclobutenones with VO(OEt)Cl2. J Chem Soc Perkin Trans. 1994;1:3–4.

    Article  Google Scholar 

  6. Aureliano M, Crans DC. Decavanadate (V10O28 6−) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem. 2009;103:536–46.

    Article  CAS  Google Scholar 

  7. Wang Q, Liu TT, Fu Y, Wang K, Yang XG. Vanadium compounds discriminate hepatoma and normal hepatic cells by differential regulation of reactive oxygen species. J Biol Inorg Chem. 2010;15:1087–97.

    Article  CAS  Google Scholar 

  8. Sanna D, Buglyo′ P, Micera G, Garribba E. A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds. J Biol Inorg Chem. 2010;15:825–39.

    Article  CAS  Google Scholar 

  9. Badea M, Olar R, Marinescu D, Uivarosi V, Aldea V, Nicolescu TO. Thermal stability of new vanadyl complexes with flavonoid derivatives as potential insulin-mimetic agents. J Therm Anal Calorim. 2010;99:823–7.

    Article  CAS  Google Scholar 

  10. Khalameida SV, Skubiszewska-Zie˛ba J, Zazhigalov VA, Leboda R, Wieczorek-Ciurowa K. Chemical and phase transformation in the V2O5–(NH4)2Mo2O7 system during the mechanochemical treatment in various media. J Therm Anal Calorim. 2010;101:823–32.

    Article  CAS  Google Scholar 

  11. Filipek E, Piz M. The reactivity of SbVO5 with T-Nb2O5 in solid state in air. J Therm Anal Calorim. 2010;101:447–53.

    Article  CAS  Google Scholar 

  12. Sydorchuk V, Khalameida S, Zazhigalov V, Skubiszewska-Zieba J, Leboda R. Solid-state interactions of vanadium and phosphorus oxides in the closed systems. J Therm Anal Calorim. 2010;100:11–7.

    Article  CAS  Google Scholar 

  13. Melnikov P, Gonc¸alves RV, Wender H. Synthesis of Sb(VO3)3 and study of ternary system xNH4VO3 + (1 − x)(NH4)2HPO4 + Sb2O3. J Therm Anal Calorim. 2011;105:107–12.

    Article  CAS  Google Scholar 

  14. Ahamad MN, Vaish R, Varma KBR. Calorimetric studies on 2TeO2–V2O5 glasses. J Therm Anal Calorim. 2011;105:239–43.

    Article  Google Scholar 

  15. Vlad M, Labádi I, Saity L, Tudose R, Linert W, Costisor O. Synthesis, characterisation and thermal properties of [Cu(VO)2(C2O4)3(4,4′-bpy)2·2H2O]A 2D polymer. J Therm Anal Calorim. 2008;91:925–8.

    Article  CAS  Google Scholar 

  16. Modi CK, Patel MN. Synthetic, spectroscopic and thermal aspects of some heterochelates. J Therm Anal Calorim. 2008;94:247–55.

    Article  CAS  Google Scholar 

  17. Fisher DC, Barclay-Peet SJ, Balfe CA, Raymond KN. Synthesis and characterization of vanadium(V) and -(IV) hydroxamate complexes. X-ray crystal structures of oxochlorobis(benzohydroxamato)vanadium(V) and oxoisopropoxo(N,N′-dihydroxy-N,N′-diisopropylheptanediamido)vanadium(V). Inorg Chem. 1989;28:06–4399.

    Article  Google Scholar 

  18. Liu YM, Cao Y, Yi N, Feng WL, Dai WL, Yan SR, He HY, Fan KN. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. J Catal. 2004;224:417–28.

    Article  CAS  Google Scholar 

  19. Li Y, Huang Z, Rong S. A Vanadium oxide nanotube-based nitric oxide gas sensor. Sen Mater. 2006;18:241–9.

    CAS  Google Scholar 

  20. Zheng C, Zhang J, Luo G, Ye J, Wu M. Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature. J Mater Sci. 2000;35:3425–9.

    Article  CAS  Google Scholar 

  21. Zheng C, Zhang X, Zhang J, Liao K. Preparation and characterization of VO2 nanopowders. J Solid State Chem. 2001;156:274–80.

    Article  CAS  Google Scholar 

  22. Occhiuzzi M, Cordischi D, Dragone R. Reactivity of some vanadium oxides: an EPR and XRD study. J Solid State Chem. 2005;178:1551–8.

    Article  CAS  Google Scholar 

  23. Lappalainen J, Heinilehto S, Saukko S, Lantto V, Jantunen H. Microstructure dependent switching properties of VO2 thin films. Sensor Actuat A-Phys. 2008;142:250–5.

    Article  Google Scholar 

  24. Velichko AA, Kuldin NA, Stefanovich GB, Pergament AL. Controlled switching dynamics in Si-SiO2-VO2 structures. Tech Phys Lett. 2003;29:507–9.

    Article  CAS  Google Scholar 

  25. Wang H, Yi X, Chen S, Fu X. Fabrication of vanadium oxide micro-optical switches. Sensor Actuat A-Phys. 2005;122:108–12.

    Article  Google Scholar 

  26. Xiao D, Kim KW, Zavada JM. Imaging properties of a metallic photonic crystal. J Appl Phys. 2007;101:1131051–5.

    Google Scholar 

  27. Nguyen C-A, Shin H-J, Kim KT, Han Y-H, Moon S. Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer. Sensor Actuat A-Phys. 2005;123:87–91.

    Article  Google Scholar 

  28. Lee M-H, Kim M-G. RTA and stoichiometry effect on the thermochromism of VO2 thin films. Thin Solid Films. 1996;286:219–22.

    Article  CAS  Google Scholar 

  29. Cui J, Da D, Jiang W. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Appl Surf Sci. 1998;133:225–9.

    Article  CAS  Google Scholar 

  30. Nagashima M, Wada H, Tanikawa K, Shirahata H. The Electronic behaviors of oxygen-deficient VO2 thin films in low temperature region. Jpn J Appl Phys. 1998;37:4433–8.

    Article  CAS  Google Scholar 

  31. Muraoka Y, Hiroi Z. Metal–insulator transition of VO2 thin films grown on TiO2 001 and 110 substrates. Appl Phys Lett. 2002;80:583–5.

    Article  CAS  Google Scholar 

  32. Béteille F, Mazerolles L, Livage J. Microstructure and metal-insulating transition of VO2 thin films. Mater Res Bull. 1999;34:2177–84.

    Article  Google Scholar 

  33. Sediri F, Gharbi N. Controlled hydrothermal synthesis of VO2(B) nanobelts. Mater Lett. 2009;63:15–8.

    Article  CAS  Google Scholar 

  34. Channu VSR, Holze R, Rambabu B, Kalluru RR, Williams QL, Wen C. Reduction of V4+ from V5+ using polymer as a surfactant for electrochemical applications. Int J Electrochem Sci. 2010;5:605–14.

    CAS  Google Scholar 

  35. Sharma N, Kumari M, Kumar V, Chaudhry SC, Kanwar SS. Synthesis, characterization and antibacterial activity of vanadium (IV) complexes of hydroxamic acids. J Coord Chem. 2010;63:176–84.

    Article  CAS  Google Scholar 

  36. Rowe RA, Jones MM. Vanadium(IV)oxy(acetylacetonate). Inorg Synth. 1957;5:113–6.

    Article  CAS  Google Scholar 

  37. Cooley JH, Bills WD, Throckmorton JR. Preparation of some alkyl-substituted monohydroxamic acids, N-acyl-O-alkylhydroxylamines. J Org Chem. 1960;25:1734–6.

    Article  CAS  Google Scholar 

  38. Botto IL, Vassallo MB, Baran EJ, Minelli G. IR spectra of VO2 and V2O3. Mater Chem Phys. 1997;50:267–70.

    Article  CAS  Google Scholar 

  39. Mlyuka NR, Niklasson GA, Granqvist CG. Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation. Phys Status Solidi A. 2009;206:2155–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Reena Sharma is thankful to University Grant Commission, New Delhi for providing financial support in the form of Major Research Project F. No. 33-295/2007 (SR) dated 28.02.2008. Authors thank Department of Science & Technology (DST), Government of India, New Delhi for providing financial assistance for FT-IR facility to the department. The authors also thank Sophisticated Analytical Instrument Facility, Punjab University Chandigarh, for recording XRD data

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N., Kumari, M. & Sharma, R. Thermoanalytical studies of oxovanadium(IV)hydroxamate complexes. J Therm Anal Calorim 107, 225–229 (2012). https://doi.org/10.1007/s10973-011-1930-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1930-x

Keywords

Navigation