Skip to main content
Log in

Comparative study of thermal degradation behavior of graft copolymers of polysaccharides and vinyl monomers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal degradation of graft copolymers of both polysaccharides (guar gum and xanthan gum) showed gradual decrease in mass loss. Pure guar gum degraded about 95% but pure xanthan gum degraded about 76% up to 1173.15 K, while graft copolymers of guar gum and xanthan gum degraded only 65–76% up to 1173.15 K. Acrylic acid grafted guar gum and xanthan gum showing two-step degradation with formation of anhydride and ketonic linkage during heating, same pattern of degradation was found for xanthan gum-g-methacrylic acid. Guar gum-g-acrylamide degraded in single step and xanthan gum-g-acrylamide started to degrade above 448.15 K and it is a two-stage process and imparts thermal stability due to the formation of imide linkage with evolution NH3. Guar gum-g-methacrylamide degraded in three steps due to the loss of NH3 and CO2 successively. 4-vinyl pyridine grafted both polysaccharides show single step degradation due to loss of pyridine pendent. N-vinyl formamide grafted guar gum and xanthan gum started to degrade at about 427.15 K, showed two-stage degradation process with the evolution of CO and NH3 molecules while guar gum-g-(N-vinyl-2-pyrrolidone) degraded into two steps by the loss of pyrrolidone nucleus. Gum-g-2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) showed two-step degradation processes in two successive degradation steps, while xanthan gum-g-AMPS has started degradation at about 427.15 K and completed in five degradation steps. Overall, it was found that the grafted polysaccharides are thermally more stable than pure polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Scheme 4
Fig. 11
Scheme 5
Scheme 6
Fig. 12
Fig. 13
Scheme 7

Similar content being viewed by others

References

  1. Seaman JK. Hand book of water soluble gums and resins. New York: McGraw Hill; 1980. p. 96–101.

    Google Scholar 

  2. Whistler RL, Smart CL. Polysaccharide chemistry. New York: Academic Press Inc.; 1953. p. 5296–331.

    Google Scholar 

  3. Boggs AD. Master’s Thesis, Purdue University, Lafayette; 1949.

  4. Ahmad ZF, Whistler RL. The structure of guaran. J Am Chem Soc. 1950;72:2524–5.

    Article  Google Scholar 

  5. Rogovin SP, Anderson RG, Cadmus MC. Production of polysaccharide with Xanthomonas campestris. J Biochem Microb Technol Eng. 1961;3(1):51–63.

    Article  CAS  Google Scholar 

  6. Jeanes A, Pittsley JE, Senti FR. Polysaccharide B-1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. J Appl Polym Sci. 1961;5:519–26.

    Article  CAS  Google Scholar 

  7. Melton LD, Mindt L, Rees DA. Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydr Res. 1976;46(2):245–57.

    Article  CAS  Google Scholar 

  8. Holtzwarth G. Conformation of the extracellular polysaccharide of Xanthomonas campestris. Biochemistry. 1976;15(19):4333–9.

    Article  Google Scholar 

  9. Janson PE, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res. 1975;45(1):275–82.

    Article  Google Scholar 

  10. Sohn JI, Kim CA, Choi HJ, Jhon MS. Drag-reduction effectiveness of xanthan gum in a rotating disk apparatus. Carbohydr Polym. 2001;45(1):61–8.

    Article  CAS  Google Scholar 

  11. Kierulf C, Sutherland IW. Thermal stability of xanthan preparations. Carbohydr Polym. 1988;9(3):185–94.

    Article  CAS  Google Scholar 

  12. Lund T, Lecourtier J, Muller G. Properties of xanthan solutions after long-term heat treatment at 90°C. Polym Degrad Stab. 1990;27(2):211–25.

    Article  CAS  Google Scholar 

  13. Noble O, Tarvel FR. Rheological properties of galactomannan-based gels. Part 2—ion cross-linked galactomannan gels. Carbohydr Polym. 1990;12(3):279–93.

    Article  CAS  Google Scholar 

  14. Adhikari P, Singh RP. Synthesis, characterization and flocculation characteristics of hydrolyzed and unhydrolyzed polyacrylamide grafted xanthan gum. J Appl Polym Sci. 2004;94(4):1411–9.

    Article  Google Scholar 

  15. Kojima K, Takahashi K, Motoda S, Yoshikuni M. Tributylborane-initiated graft copolymerization onto xanthan gum and adsorption of heavy metal ions by graft copolymers. Kogakubu Kenkyu Hokoku (Chiba Daigaku). 1985;36(2):83–8.

    CAS  Google Scholar 

  16. Cottrell IW, Shim JL, Best JS, Empey RA. Sulfonic acid and sulfomethyl-containing graft co-polymers of xanthan gum. ACS Symp Ser Carbohydr Sulfates. 1978;77:193–202.

    Article  CAS  Google Scholar 

  17. Loria-Bastarrachea MI, Herrera-Kao W, Cauich-Rodriguez JV, Cervantes-Ue JM, Vazquez-Torres H, Avila-Ortega A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J Therm Anal Calorim. 2011;104:737–42.

    Article  CAS  Google Scholar 

  18. Fernandez MD, Fernandez MJ. Thermal decomposition of copolymers from ethylene with some vinyl derivatives. J Therm Anal Calorim. 2008;91:447–54.

    Article  Google Scholar 

  19. Carrillo F, Defays B, Colom X, Suñol JJ, Lopez-Mesas M. Thermal degradation of lyocell/poly-N-isopropylacrylamide graft copolymer gels. J Therm Anal Calorim. 2009;97:945–8.

    Article  CAS  Google Scholar 

  20. Shenoy M, D’Melo D. Guar gum as a filler in unsaturated polyester composites. e-polymers. 2007;111:1–11.

  21. Mundargi RC, Patil SA, Aminabhavi TM. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr Polym. 2007;69:130–41.

    Article  CAS  Google Scholar 

  22. Mothe CG, Correia DZ, de Franca FFP. Thermal and rheological study of polysaccharides for enhanced oil recovery. J Therm Anal Calorim. 2006;85:31–6.

    Article  CAS  Google Scholar 

  23. Behari K, Taunk K. Graft copolymerization of methacrylamide on guar gum using PDP/malonic acid redox pair. Indian J Chem Technol. 1997;4(3):141–4.

    CAS  Google Scholar 

  24. Srivastava A, Behari K. Synthesis and characterization of Graft copolymer and studies for metal ion sorption and swelling behavior (guar gum-g-N-vinyl-2-pyrrolidone). J Appl Polym Sci. 2006;100(3):2480–9.

    Article  CAS  Google Scholar 

  25. Pandey PK, Srivastava A, Behari K. Studies on graft copolymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid onto guar gum by bromate/Mandelic acid redox pair. DES MONOMERS POLYM. 2006;9(3):247–60.

    Article  CAS  Google Scholar 

  26. Behari K, Taunk K, Tripathi M. Cu2+ mandelic acid redox pair initiated graft copolymerization acrylamide onto guar gum. J Appl Polym Sci. 1999;71:739–45.

    Article  CAS  Google Scholar 

  27. Behari K, Tripathi M, Taunk K, Kumar R. Graft copolymerization of acrylic acid onto guar gum. Polym Int. 2000;49:153–7.

    Article  CAS  Google Scholar 

  28. Srivastava A, Mishra V, Singh SK, Kumar R. One pot synthesis and characterization of industrially important graft copolymer (GOH-g-ACM) by using peroxymonosulphate/mercaptosuccinic acid redox pair. e-Polymers. 2009;6:1–14.

    Google Scholar 

  29. Srivastava A, Mishra V, Singh SK, Kumar R. Vanadium (V)/Mandelic acid initiated graft copolymerization of acrylamide onto guar gum in an aqueous medium. J Appl Polym Sci. 2010;115(4):2375–85.

    Article  CAS  Google Scholar 

  30. Mishra V, Kumar R. Synthesis and characterization of five-arms star polymer of N-vinyl pyrrolidone through ATRP based on glucose. Carbohydr Polym. 2011;83:1534–40.

    Article  CAS  Google Scholar 

  31. Mishra V, Kumar R. Graft copolymer of guar gum and 4-amino antipyrine by atom transfer radical polymerization in aqueous medium. Carbohydr Polym. 2011;86:296–303. doi:10.1016/j.carbpol.2011.04.052.

    Article  CAS  Google Scholar 

  32. Taunk K, Behari K. Graft copolymerization of acrylic acid onto guar gum. J Appl Polym Sci. 2000;77:39–44.

    Article  CAS  Google Scholar 

  33. Pandey PK, Srivastava A, Tripathy J, Behari K. Graft copolymerization of acrylic acid onto guar gum initiated by vanadium-mercaptosuccinic acid redox pair. Carbohydr Polym. 2006;65:414–20.

    Article  CAS  Google Scholar 

  34. Behari K, Banerjee J, Srivastava A, Mishra DK. Studies on graft copolymerization of N-vinyl formamide on to guar gum initiated by bromate/ascorbic acid redox pair. Indian J Chem Technol. 2005;12:664–70.

    CAS  Google Scholar 

  35. Kumar R, Srivastava A, Behari K. Graft copolymerization of methacrylic acid onto xanthan gum by Fe2+/H2O2 redox initiator. J Appl Polym Sci. 2007;105(4):1922–9.

    Article  CAS  Google Scholar 

  36. Banerjee J, Srivastava A, Srivastava A, Behari K. Studies on synthesis and characterization of xanthan gum-g-N-vinyl formamide using PMS/Ag(I) system. J Appl Polym Sci. 2006;101(3):1637–45.

    Article  CAS  Google Scholar 

  37. Srivastava A, Behari K. Graft copolymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid onto xanthan gum by ascorbic/bromate redox pair. Polym Mater Sci Eng. 2004;90:697–698.

    Google Scholar 

  38. Kumar R, Srivastava A, Behari K. Synthesis and characterization of polysaccharide based graft copolymer by using potassium peroxymonosulphate/ascorbic acid as an efficient redox initiator in inert atmosphere. J Appl Polym Sci. 2009;112(3):1407–15.

    Article  CAS  Google Scholar 

  39. Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–9.

    Article  CAS  Google Scholar 

  40. Conley RT. In: Conley RT, editor. Thermal stability of polymers, vol 1. New York: Marcel Dekker; 1970. p. 254–63.

Download references

Acknowledgements

Authors are thankful to SAIF, CUST Cochin for providing TGA/DTG thermo curves, financial assistant from DST New Delhi (grant no. SR/FTP/CS-107/2005) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A., Mishra, V., Singh, P. et al. Comparative study of thermal degradation behavior of graft copolymers of polysaccharides and vinyl monomers. J Therm Anal Calorim 107, 211–223 (2012). https://doi.org/10.1007/s10973-011-1921-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1921-y

Keywords

Navigation