Skip to main content
Log in

Influence of the zirconia transformation on the thermal behavior of zircon–zirconia composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

During a heating–cooling cycle, zirconia (ZrO2) undergoes a martensitic transformation from monoclinic to tetragonal structure phases, which presents special hysteresis loop in the dilatometry curve at temperatures between 800 and 1100 °C. Monoclinic zirconia (m-ZrO2) particles reinforced ceramic matrix composites not always present this behavior. In order to elucidate this fact a series of zircon–zirconia (ZrSiO4–ZrO2) ceramic composites have been obtained by slip casting and characterized. The final properties were also correlated with the zirconia content (0–30 vol.%). The influence of the martensitic transformation (m–t) in well-dispersed zirconia grains ceramic composite on the thermal behavior was analyzed. Thermal behavior evaluation was carried out; the correlation between the thermal expansion coefficients with the zirconia content showed a deviation from the mixing rule applied. A hysteresis loop was observed in the reversible dilatometric curve of composites with enough zirconia grains (≥10 vol.%). Over this threshold the zirconia content is correlated with the loop area. The transformation temperatures were evaluated and correlated with the zirconia addition. When detected the m–t temperature transformation is slightly influenced by the zirconia content (due to the previously evaluated decrease in the material stiffness) and similar to the temperature reported in literature. The reverse (cooling) transformation temperature is strongly decreased by the ceramic matrix. The DTA results are consistent with the dilatometric analysis, but this technique showed more reliable results. Particularly the endothermic m–t transformation temperature showed to be easily detected even when the only m-ZrO2 present was the product of the slight thermal dissociation of the zircon during the processing of the pure zircon material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Torrecillas R, Moya JS, De Aza S, Gros H, Fantozzi G. Microstructure and mechanical properties of mullite-zirconia reaction-sintered composites. Acta Metall Mater. 1993;41(6):1647–52.

    Article  CAS  Google Scholar 

  2. Lathabai S, Hay DG, Wagner F, Claussen N. Reaction-bonded mullite/zirconia composites. J Am Ceram Soc. 1996;79(1):248–56.

    Article  CAS  Google Scholar 

  3. Hamidouche M, Bouaouadja N, Osmani H, Torrecillias R, Fantozzi G. Thermomechanical behavior of mullite-zirconia composite. J Eur Ceram Soc. 1996;16(4):441–5.

    Article  CAS  Google Scholar 

  4. Jang B-K. Microstructure of nano SiC dispersed Al2O3-ZrO2 composites. Mater Chem Phys. 2005;93(2–3):337–41.

    Article  CAS  Google Scholar 

  5. Hirvonen A, Nowak R, Yamamoto Y, Sekino T, Niihara K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceram Soc. 2006;26(8):1497–505.

    Article  CAS  Google Scholar 

  6. Sarkar D, Adak S, Mitra NK. Preparation and characterization of an Al2O3-ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture. Compos Part A. 2007;38(1):124–31.

    Article  Google Scholar 

  7. Yugeswaran S, Selvarajan V, Dhanasekaran P, Lusvarghi L. Transferred arc plasma processing of mullite-zirconia composite from natural bauxite and zircon sand. Vacuum. 2008;83(2):353–9.

    Article  CAS  Google Scholar 

  8. Rendtorff N, Garrido L, Aglietti E. Thermal shock behavior of dense Mullite-Zirconia composites obtained by two processing routes. Ceram Int. 2008;34(8):2017–24.

    Article  CAS  Google Scholar 

  9. Belhouchet H, Hamidouche M, Bouaouadja N, Garnier V, Fantozzi G. Elaboration and characterization of mullite-zirconia composites from gibbsite, boehmite and zircon. Ceramics-Silikaty. 2009;53(3):205–10.

    CAS  Google Scholar 

  10. Ibarra Castro MN, Almanza Robles JM, Cortés Hernández DA, Escobedo Bocardo JC, Torres Torres J. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int. 2009;35(2):921–4.

    Article  CAS  Google Scholar 

  11. Mecif A, Soro J, Harabi A, Bonnet JP. Preparation of mullite- and zircon-based ceramics using kaolinite and zirconium oxide: a sintering study. J Am Ceram Soc. 2010;93(5):1306–12.

    CAS  Google Scholar 

  12. Chockalingam S, Traver HK. Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des. 2010;31(8):3641–6.

    Article  CAS  Google Scholar 

  13. Tür YK, Sünbül AE, Yilmaz H, Duran C. Effect of mullite grains orientation on toughness of mullite/zirconia composites. Ceram Trans. 2010;210:273–8.

    Google Scholar 

  14. Curran DJ, Fleming TJ, Towler MR, Hampshire S. Mechanical properties of hydroxyapatite-zirconia compacts sintered by two different sintering methods. J Mater Sci: Mater Med. 2010;21(4):1109–20.

    Article  CAS  Google Scholar 

  15. Ma W, Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. Mater Sci Eng A. 2008;477(1–2):100–106.

    Google Scholar 

  16. Sahnoune F, Saheb N, Chegaar M, Goeuriot P. Microstructure and sintering behavior of mullite-zirconia composites. Mater Sci Forum. 2010;638–642:979–84.

    Article  Google Scholar 

  17. Calderon-Moreno JM, Yoshimura M. Al2O3–Y3AlO12(YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc. 2005;25(8):1365–8.

    Article  CAS  Google Scholar 

  18. Hamidouche M, Bouaouadja N, Torrecillas R, Fantozzi G. Thermomechanical behavior of a zircon–mullite composite. Ceram Int. 2007;33(4):655–62.

    Article  CAS  Google Scholar 

  19. Naglieri V, Palmero P, Montanaro L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim. 2009;97(1):231–7.

    Article  CAS  Google Scholar 

  20. Shevchenko AV, Dudnik EV, Ruban AK, Redko VP, Lopato LM. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Metal Ceram. 2010;49(1–2):42–9.

    Article  CAS  Google Scholar 

  21. Malek O, Vleugels J, Perez Y, De Baets P, Liu J, Van den Berghe S, Lauwers B. Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys. 2010;123(1):114–20.

    Article  CAS  Google Scholar 

  22. Sarkar SK, Lee BT. Evaluation and comparison of the microstructure and mechanical properties of fibrous Al2O3-(m-ZrO2)/t-ZrO2 composites after multiple extrusion steps. Ceram Int. 2010;36(6):1971–6.

    Article  CAS  Google Scholar 

  23. Pan C, Zhang L, Zhao Z, Qu Z, Yang Q, Huang X. Changes in microstructures and properties of Al2O3/ZrO2(Y2O3) with different content of ZrO2. Adv Mater Res. 2010;105–106(1):1–4.

    Article  Google Scholar 

  24. Rendtorff N, Garrido L, Aglietti E. Mullite-zirconia-zircon composites: properties and thermal shock resistance. Ceram Int. 2009;35(2):779–86.

    Article  CAS  Google Scholar 

  25. Rendtorff N, Garrido L, Aglietti E. Zirconia toughening of mullite-zirconia-zircon composites obtained by direct sintering. Ceram Int. 2010;36(2):781–8.

    Article  CAS  Google Scholar 

  26. Zender H, Leistner H, Searle H. ZrO2 materials for applications in the ceramic industry. Interceram. 1990;39(6):33–6.

    CAS  Google Scholar 

  27. Kelly P, Rose LF. The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci. 2002;47:463–557.

    Article  CAS  Google Scholar 

  28. Rendtorff NM, Garrido LB, Aglietti EF. Thermal behavior of mullite–zirconia–zircon composites. Influence of zirconia phase transformation. J Therm Anal Calorim. doi:10.1007/s10973-010-1030-3.

  29. Wang C, Zinkevich M, Aldinger F. The zirconia-Hafnia system: DTA measurements and thermodynamic calculations. J Am Ceram Soc. 2006;89(12):3751–8.

    Article  CAS  Google Scholar 

  30. Luo X, Zhou W, Ushakov SV, Navrotsky A, Demkov AA. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B. 2009;80(13):134119.

    Article  Google Scholar 

  31. Wang C, Zinkevich M, Aldinger F. On the thermodynamic modeling of the Zr-O system. Calphad. 2004;28(3):281–92.

    Article  CAS  Google Scholar 

  32. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009;92(9):1901–20.

    Article  CAS  Google Scholar 

  33. Moriya Y, Navrotsky A. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic-tetragonal phase transition. J Chem Thermodyn. 2006;38(3):211–23.

    Article  CAS  Google Scholar 

  34. Skovgaard M, Ahniyaz A, Sørensen BF, Almdal K, van Lelieveld A. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc. 2010;30:2749–55.

    Article  CAS  Google Scholar 

  35. Ownby PD, Burt DD, Stewart DV. Experimental study of the thermal expansion of yttria stabilized zirconia ceramics. Thermochim Acta. 1991;190(1):39–42.

    Article  CAS  Google Scholar 

  36. Mori T, Yamamura H, Kobayashi H, Mitamura T. Preparation of high-purity ZrSi04 using sol-gel processing and mechanical properties of the sintered body. J Am Ceram Soc. 1990;75(9):2420–6.

    Article  Google Scholar 

  37. Moreno R, Moya JS, Requena J. Slip casting of zircon by using an organic surfactant. Ceram Int. 1991;17(1):37.

    Article  CAS  Google Scholar 

  38. Garrido LB, Aglietti EF. Zircon based ceramics by colloidal processing. Ceram Int. 2001;27(5):491–7.

    Article  CAS  Google Scholar 

  39. Shi Y, Huang X, Yan D. Fabrication of hot-pressed zircon ceramics: mechanical properties and microstructure. Ceram Int. 1997;23(5):457–62.

    Article  CAS  Google Scholar 

  40. Carbonneau X, Hamidouche M, Olagnon C, Fantozzi G, Torrecillas R. High temperature behavior of a zircon ceramic. Key Eng Mater. 1997;132–136:571–4.

    Article  Google Scholar 

  41. Shi Y, Huang X, Yan D. Mechanical properties and toughening behavior of particulate-reinforced zircon matrix composites. J Mater Sci Lett. 1999;18(3):213–6.

    Article  CAS  Google Scholar 

  42. Singh RN. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite. J Am Ceram Soc. 1990;73(8):2399–406.

    Article  CAS  Google Scholar 

  43. Singh RN. Mechanical properties of a zircon matrix composite reinforced with silicon carbide whiskers and filaments. J Mater Sci. 1991;26(7):1839–46.

    Article  CAS  Google Scholar 

  44. Singh RN. SiC fibre-reinforced zircon composites. Am Ceram Soc Bull 1991;70(I):55–56.

    Google Scholar 

  45. Shi Y, Huang X, Yan D. Toughening of hot-pressed ZrSiO4 ceramics by addition of Y-TZP. Mater Lett. 1998;35(3–4):161–5.

    Article  CAS  Google Scholar 

  46. Alahakoon WPCM, Burrows SE, Howes AP, Karunaratne BSB, Smith ME, Dobedoe R. Fully densified zircon co-doped with iron and aluminium prepared by sol-gel processing. J Eur Ceram Soc. 2010;30(12):2515–23.

    Article  CAS  Google Scholar 

  47. Kondoh I, Tanaka T, Tamari N. Sintering of zircon-silicon carbide whisker composites and their mechanical properties. J Jpn Ceram Soc. 1993;101(3):369–72.

    Article  CAS  Google Scholar 

  48. Shi Y, Huang X, Yan D. Synergistic strengthening and toughening of zircon ceramics by the additions of SiC whisker and 3Y-TZP simultaneously. J Eur Ceram Soc. 1997;17:1003–10.

    Article  CAS  Google Scholar 

  49. Rendtorff NM, Garrido LB, Aglietti EF. Mechanical and fracture properties of zircon–mullite composites obtained by direct sintering. Ceram Int. 2009;35(7):2907–13.

    Article  CAS  Google Scholar 

  50. Tartaj P, Sanz J, Serna CJ, Ocana M. Zircon formation from amorphous spherical ZrSiO4 particles obtained by hydrolysis of aerosols. J Mater Sci. 1994;29(24):6533–8.

    Article  CAS  Google Scholar 

  51. Kaiser A, Lobert M, Telle R. Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc. 2008;28(11):2199–211.

    Article  CAS  Google Scholar 

  52. Váczi T, Nasdala L, Wirth R, Mehofer M, Libowitzky E, Häger T. On the breakdown of zircon upon “dry” thermal annealing. Miner Petrol. 2009;97:1–129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas M. Rendtorff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendtorff, N.M., Suarez, G., Sakka, Y. et al. Influence of the zirconia transformation on the thermal behavior of zircon–zirconia composites. J Therm Anal Calorim 110, 695–705 (2012). https://doi.org/10.1007/s10973-011-1906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1906-x

Keywords

Navigation