Thermal analysis and spectroscopic studies of electrospun nano-scale composite fibers

Abstract

The aim of this article is to develop nano-scale composite fibers from wood pulp, modified wood pulp, and polyethylene oxide (PEO). Composite fibers were developed in the diameter range of 339–612 nm. Alignment process of the composite fibers was done by electrostatic interactions between two collector disks. DSC results demonstrated a lower melting temperature of composite fibers than PEO powder. The development of crystalline structure in the composite fibers and acetylated wood pulp was poor. Thermogravimetric analysis revealed that the thermal stability of composite fibers were relatively lower than PEO powder. Fourier transform infrared spectroscopy (FTIR) showed significant differences between modified and unmodified wood pulp in the region of 960–1746 cm−1. The peak intensity of acetylated wood pulp was appeared at 1746 cm−1 because of acetyl groups. The composite fibers demonstrated the characteristic peak of PEO since less wood pulp was incorporated in the composite system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Samatham R, Kim KJ. Electric current as a control variable in the electrospinning process. Polym Eng Sci. 2006;46(7):954–9.

    Article  CAS  Google Scholar 

  2. 2.

    Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci. 2003;8(1):64–75.

    Article  CAS  Google Scholar 

  3. 3.

    Darrell HR, Iksoo C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3):216.

    Article  Google Scholar 

  4. 4.

    Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH. Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem. 2003;41(4):545–53.

    Article  CAS  Google Scholar 

  5. 5.

    Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL. Structural studies of electrospun cellulose nanofibers. Polymer. 2006;47(14):5097–107.

    Article  CAS  Google Scholar 

  6. 6.

    Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular mass and concentration in a good solvent. Polymer. 2005;46(13):4799–810.

    Article  CAS  Google Scholar 

  7. 7.

    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    Article  CAS  Google Scholar 

  8. 8.

    Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today. 2006;9(3):40–50.

    Article  CAS  Google Scholar 

  9. 9.

    Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.

    Article  CAS  Google Scholar 

  10. 10.

    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

    Article  CAS  Google Scholar 

  11. 11.

    Awal A, Ghosh S, Sain M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim. 2010;99(2):695–701.

    Article  CAS  Google Scholar 

  12. 12.

    Awal A, Ghosh S, Sain M. Development and morphological characterization of wood pulp reinforced biocomposite fibers. J Mater Sci. 2009;44(11):2876–81.

    Article  CAS  Google Scholar 

  13. 13.

    Baltazar-y-Jimenez A, Sain M. Environmental aspects of lignocellulosic-fibre reinforced green materials. Can Chem News. 2009;61(6):14–7.

    CAS  Google Scholar 

  14. 14.

    Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A. Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol. 2008;68(1):215–27.

    Article  CAS  Google Scholar 

  15. 15.

    Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18(4):351–63.

    Article  CAS  Google Scholar 

  16. 16.

    Bledzki AK, Reihmane S, Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci. 1996;59(8):1329–36.

    Article  CAS  Google Scholar 

  17. 17.

    Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf. 2004;35(3):371–6.

    Article  Google Scholar 

  18. 18.

    Awal A, Cescutti G, Ghosh SB, Müssig J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos A Appl Sci Manuf. 2011;42(1):50–6.

    Article  Google Scholar 

  19. 19.

    Huber T, Muessig J. Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos Interfaces. 2008;15:335–49.

    Article  CAS  Google Scholar 

  20. 20.

    Müssig J, Rau S, Herrmann AS. Influence of fineness, stiffness and load-displacement characteristics of natural fibres on the properties of natural fibre-reinforced polymers. J Nat Fibers. 2006;3(1):59–80.

    Article  Google Scholar 

  21. 21.

    Sain M, Panthapulakkal S. Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod. 2006;23(1):1–8.

    Article  CAS  Google Scholar 

  22. 22.

    Alemdar A, Sain M. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. 2008;68(2):557–65.

    Article  CAS  Google Scholar 

  23. 23.

    Pracella M, Pancrazi C, Minhaz-Ul Haque M, D’Alessio A. Thermal and microstructural characterization of compatibilized polystyrene/natural fillers composites. J Therm Anal Calorim. 2011;103(1):95–101.

    Article  CAS  Google Scholar 

  24. 24.

    Francis L, Balakrishnan A, Sanosh KP, Marsano E. Characterization and tensile strength of HPC-PEO composite fibers produced by electrospinning. Mater Lett. 2010;64(16):1806–8.

    Article  CAS  Google Scholar 

  25. 25.

    Nirmala R, Navamathavan R, El-Newehy MH, Kim HY. Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Mater Lett. 2011;65(3):493–6.

    Article  CAS  Google Scholar 

  26. 26.

    Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T, Supaphol P. Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym. 2010;81(3):675–80.

    Article  CAS  Google Scholar 

  27. 27.

    Wang C, Liu F-H, Huang W-H. Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix. Polymer. 2011;52(5):1326–36.

    Article  CAS  Google Scholar 

  28. 28.

    Khalil H, Ismail H, Rozman HD, Ahmad MN. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur Polym J. 2001;37(5):1037–45.

    Article  CAS  Google Scholar 

  29. 29.

    Paul A, Joseph K, Thomas S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol. 1997;57(1):67–79.

    Article  CAS  Google Scholar 

  30. 30.

    Mwaikambo L, Ansell M. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chem. 1999;272(1):108–16.

    Article  CAS  Google Scholar 

  31. 31.

    Kim D-Y, Nishiyama Y, Kuga S. Surface acetylation of bacterial cellulose. Cellulose. 2002;9(3):361–7.

    Article  CAS  Google Scholar 

  32. 32.

    Chang W, Ma G, Yang D, Su D, Song G, Nie J. Electrospun ultrafine composite fibers from organic-soluble chitosan and poly(ethylene oxide). J Appl Polym Sci. 2010;117(4):2113–20.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge financial support of this study given by Biocar, Ontario.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Awal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Awal, A., Sain, M. & Chowdhury, M. Thermal analysis and spectroscopic studies of electrospun nano-scale composite fibers. J Therm Anal Calorim 107, 1237–1242 (2012). https://doi.org/10.1007/s10973-011-1875-0

Download citation

Keywords

  • Softwood pulp
  • Polyethylene oxide
  • Nano-composite fibers
  • Electrospinning
  • Thermal properties
  • Fourier transform infrared spectroscopy (FTIR)