Journal of Thermal Analysis and Calorimetry

, Volume 107, Issue 3, pp 1237–1242 | Cite as

Thermal analysis and spectroscopic studies of electrospun nano-scale composite fibers

Article

Abstract

The aim of this article is to develop nano-scale composite fibers from wood pulp, modified wood pulp, and polyethylene oxide (PEO). Composite fibers were developed in the diameter range of 339–612 nm. Alignment process of the composite fibers was done by electrostatic interactions between two collector disks. DSC results demonstrated a lower melting temperature of composite fibers than PEO powder. The development of crystalline structure in the composite fibers and acetylated wood pulp was poor. Thermogravimetric analysis revealed that the thermal stability of composite fibers were relatively lower than PEO powder. Fourier transform infrared spectroscopy (FTIR) showed significant differences between modified and unmodified wood pulp in the region of 960–1746 cm−1. The peak intensity of acetylated wood pulp was appeared at 1746 cm−1 because of acetyl groups. The composite fibers demonstrated the characteristic peak of PEO since less wood pulp was incorporated in the composite system.

Keywords

Softwood pulp Polyethylene oxide Nano-composite fibers Electrospinning Thermal properties Fourier transform infrared spectroscopy (FTIR) 

References

  1. 1.
    Samatham R, Kim KJ. Electric current as a control variable in the electrospinning process. Polym Eng Sci. 2006;46(7):954–9.CrossRefGoogle Scholar
  2. 2.
    Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci. 2003;8(1):64–75.CrossRefGoogle Scholar
  3. 3.
    Darrell HR, Iksoo C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3):216.CrossRefGoogle Scholar
  4. 4.
    Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH. Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem. 2003;41(4):545–53.CrossRefGoogle Scholar
  5. 5.
    Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL. Structural studies of electrospun cellulose nanofibers. Polymer. 2006;47(14):5097–107.CrossRefGoogle Scholar
  6. 6.
    Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular mass and concentration in a good solvent. Polymer. 2005;46(13):4799–810.CrossRefGoogle Scholar
  7. 7.
    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.CrossRefGoogle Scholar
  8. 8.
    Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today. 2006;9(3):40–50.CrossRefGoogle Scholar
  9. 9.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.CrossRefGoogle Scholar
  10. 10.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.CrossRefGoogle Scholar
  11. 11.
    Awal A, Ghosh S, Sain M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim. 2010;99(2):695–701.CrossRefGoogle Scholar
  12. 12.
    Awal A, Ghosh S, Sain M. Development and morphological characterization of wood pulp reinforced biocomposite fibers. J Mater Sci. 2009;44(11):2876–81.CrossRefGoogle Scholar
  13. 13.
    Baltazar-y-Jimenez A, Sain M. Environmental aspects of lignocellulosic-fibre reinforced green materials. Can Chem News. 2009;61(6):14–7.Google Scholar
  14. 14.
    Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A. Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol. 2008;68(1):215–27.CrossRefGoogle Scholar
  15. 15.
    Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18(4):351–63.CrossRefGoogle Scholar
  16. 16.
    Bledzki AK, Reihmane S, Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci. 1996;59(8):1329–36.CrossRefGoogle Scholar
  17. 17.
    Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf. 2004;35(3):371–6.CrossRefGoogle Scholar
  18. 18.
    Awal A, Cescutti G, Ghosh SB, Müssig J. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos A Appl Sci Manuf. 2011;42(1):50–6.CrossRefGoogle Scholar
  19. 19.
    Huber T, Muessig J. Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos Interfaces. 2008;15:335–49.CrossRefGoogle Scholar
  20. 20.
    Müssig J, Rau S, Herrmann AS. Influence of fineness, stiffness and load-displacement characteristics of natural fibres on the properties of natural fibre-reinforced polymers. J Nat Fibers. 2006;3(1):59–80.CrossRefGoogle Scholar
  21. 21.
    Sain M, Panthapulakkal S. Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod. 2006;23(1):1–8.CrossRefGoogle Scholar
  22. 22.
    Alemdar A, Sain M. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. 2008;68(2):557–65.CrossRefGoogle Scholar
  23. 23.
    Pracella M, Pancrazi C, Minhaz-Ul Haque M, D’Alessio A. Thermal and microstructural characterization of compatibilized polystyrene/natural fillers composites. J Therm Anal Calorim. 2011;103(1):95–101.CrossRefGoogle Scholar
  24. 24.
    Francis L, Balakrishnan A, Sanosh KP, Marsano E. Characterization and tensile strength of HPC-PEO composite fibers produced by electrospinning. Mater Lett. 2010;64(16):1806–8.CrossRefGoogle Scholar
  25. 25.
    Nirmala R, Navamathavan R, El-Newehy MH, Kim HY. Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Mater Lett. 2011;65(3):493–6.CrossRefGoogle Scholar
  26. 26.
    Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T, Supaphol P. Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym. 2010;81(3):675–80.CrossRefGoogle Scholar
  27. 27.
    Wang C, Liu F-H, Huang W-H. Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix. Polymer. 2011;52(5):1326–36.CrossRefGoogle Scholar
  28. 28.
    Khalil H, Ismail H, Rozman HD, Ahmad MN. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur Polym J. 2001;37(5):1037–45.CrossRefGoogle Scholar
  29. 29.
    Paul A, Joseph K, Thomas S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol. 1997;57(1):67–79.CrossRefGoogle Scholar
  30. 30.
    Mwaikambo L, Ansell M. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chem. 1999;272(1):108–16.CrossRefGoogle Scholar
  31. 31.
    Kim D-Y, Nishiyama Y, Kuga S. Surface acetylation of bacterial cellulose. Cellulose. 2002;9(3):361–7.CrossRefGoogle Scholar
  32. 32.
    Chang W, Ma G, Yang D, Su D, Song G, Nie J. Electrospun ultrafine composite fibers from organic-soluble chitosan and poly(ethylene oxide). J Appl Polym Sci. 2010;117(4):2113–20.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Center for Biocomposites and Biomaterials ProcessingUniversity of TorontoTorontoCanada
  2. 2.Research Institute for Flexible Materials, School of Textiles & DesignHeriot Watt UniversityGalashielsUK

Personalised recommendations