Skip to main content
Log in

Thermal behaviors of N-pyrrolidine-N′-(2-chlorobenzoyl)thiourea and its Ni(II), Cu(II), and Co(III) complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The N-pyrrolidine-N′-(2-chlorobenzoyl)thiourea, HL, and their Ni(II), Cu(II), and Co(III) complexes (NiL2, CuL2, and CoL3) have been synthesized and characterized. The thermal decomposition reactions of all the compounds have been investigated by DTA/TG combined systems. The mass spectroscopy technique has been used to identify the products during pyrolytic decomposition. The pyrolytic final products have been analyzed by X-ray powder diffraction method. After comparison of thermogravimetric and mass results of HL, NiL2, CuL2, and CoL3, the decomposition mechanism of these compounds have been suggested. The thermal stability of the Ni(II) and Cu(II) complexes according to the thermogravimetric curves follows the sequence: NiL2 < CuL2. The values of the activation energy, E a, have been obtained using model-free (Kissenger–Akahira–Sunose, KAS, Flyn–Wall–Ozawa, FWO, and Isoconversional) methods for all decomposition stages. The E a versus the extent of conversion, α, plots show that the values of E a varies as α. Thirteen kinetic model equations have been tested for selecting correct reaction models. The optimized value of E a and Arrhenius factor, A, have been obtained using the best model equation. The thermodynamic functions (ΔH*, ΔS*, and ΔG*) have been calculated using these values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Douglass IB, Dains FB. Some derivatives of benzoyl and furoyl isothiocyanates and their use in synthesizing heterocyclic compounds. J Am Chem Soc. 1934;56:719–21.

    Article  CAS  Google Scholar 

  2. Schuster M. Zur chromatographie von metallchelaten, XVI. Dünnschichtchromatographie von N,N-dialkyl-N′-thiobenzoylthioharnstoff-chelaten. Fresenius Z Anal Chem. 1986;324:127–9.

    Google Scholar 

  3. Konig KH, Schuster M, Schneeweis G, Steinbrech B. Zur chromatographie von metallchelaten, XIV. Dünnschicht-chromatographie von N,N-dialkyl-N′-benzoylthioharnstoff-chelaten. Fresenius Z Anal Chem. 1984;319:66–9.

    Google Scholar 

  4. Schuster M, Kugler B, Konig KH. The chromatography of metal chelates, XIX. Influence of the acyl substituents on the chromatographic properties of acylthiourea chelates. Fresenius J Anal Chem. 1990;338:717–20.

    Google Scholar 

  5. Konig KH, Schuster M, Steinbrech B, Schneeweis G, Schlodder R. N,N-dialkyl-N′-benzoylthioharnstoffe als selective extractionsmittel zur abtrennung und anreicherung von platinmetallen. Fresenius Z Anal Chem. 1985;321:457–60.

  6. Arslan H, Duran N, Sahin NO, Kulcu N. Thermal behaviour and antimicrobial activity of novel series of benzoylthiourea derivatives. Asian J Chem. 2006;18:1710–8.

    CAS  Google Scholar 

  7. Arslan H, Duran N, Borekci G, Ozer CK, Akbay C. Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes. Molecules. 2009;14:519–27.

    Article  Google Scholar 

  8. Venkatachalam TK, Mao C, Uckun FM. Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg Med Chem. 2004;12:4275–84.

    Article  CAS  Google Scholar 

  9. Sacht C, Datt MS, Otto S, Roodt A. Chiral and achiral platinum(II) complexes for potential use as chemotherapeutic agents: crystal and molecular structures of cis-[Pt(L1)2] and [Pt(L1)Cl(MPSO)] [HL1 = N,N-diethyl-N′-benzoylthiourea]. J Chem Soc Dalton Trans. 2000;5:727–733.

    Google Scholar 

  10. Ozer CK, Arslan H, Van Derveer D, Külcü N. Synthesis and characterization of N-(arylcarbamothioyl)-cyclohexanecarboxamide derivatives: the crystal structure of N-(naphthalen-1-ylcarbamothioyl)cyclohexanecarboxamide. Molecules. 2009;14:655–66.

    Article  CAS  Google Scholar 

  11. Sun CW, Huang H, Feng M, Shi XL, Zhang XD, Zhou P. A novel class of potent influenza virus inhibitors: polysubstituted acylthiourea and its fused heterocycle derivatives. Bioorg Med Chem Lett. 2006;16:162–6.

    Article  CAS  Google Scholar 

  12. Arslan H, Kulcu N, Florke U. Synthesis and characterization of copper(II), nickel(II) and cobalt(II) complexes with novel thiourea derivatives. Trans Met Chem. 2003;28:816–19.

    Google Scholar 

  13. Binzet G, Arslan H, Florke U, Kulcu N, Duran N. Synthesis, characterization and antimicrobial activities of transition metal complexes of N,N-dialkyl-N′-(2-chlorobenzoyl)thiourea derivatives. J Coord Chem. 2006;59:1395–406.

    Article  CAS  Google Scholar 

  14. Yang D, Chen YC, Zhu NY. Sterically bulky thioureas as air and moisture stable ligands for Pd-catalyzed Heck reactions of aryl halides. Org Lett. 2004;6:1577–80.

    Article  CAS  Google Scholar 

  15. Mingji D, Liang B, Wang C, You Z, Xiang J, Dong G, Chen J, Yang Z. A novel thiourea ligand applied in the Pd-catalyzed Heck, Suzuki and Suzuki carbonylative reactions. Adv Synth Catal. 2004;346(13–15):1669–73.

    Article  Google Scholar 

  16. Dai M, Liang B, Wang C, Chen J, Yang Z. Synthesis of a novel C 2-symmetric thiourea and its application in the Pd-catalyzed cross-coupling reactions with arenediazonium salts under aerobic conditions. Org Lett. 2004;6(2):221–4.

    Article  CAS  Google Scholar 

  17. Emen MF, Arslan H, Kulcu N, Florke U, Duran N. Synthesis, characterization and antimicrobial activities of some metal complexes with N′-(2-chloro-benzoyl)thiourea ligands: the crystal structure of fac-[CoL3] and cis-[PdL2]. Pol J Chem. 2005;79:1615–26.

    CAS  Google Scholar 

  18. Cilgi GK, Cetisli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.

    Article  CAS  Google Scholar 

  19. Kücük F, Yildiz K. The decomposition kinetics of mechanically activated alunite ore in air atmosphere by thermogravimetry. Thermochim Acta. 2006;448:107–10.

    Article  Google Scholar 

  20. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction of peak temperature with heating rate in different thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  24. Simon P. Isoconversional methods; fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  CAS  Google Scholar 

  25. Koç S, Toplan N, Yildiz K, Toplan H. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2011;103:791–6.

    Article  Google Scholar 

  26. Wu W, Wu X, Lai S, Liao S. Non-isothermal kinetics of thermal decomposition of NH4ZrH(PO4)2·H2O. J Therm Anal Calorim. 2011;104:685–91.

    Article  CAS  Google Scholar 

  27. Sovizi MR, Anbaz K. Kinetic investigation on thermal decomposition of organophosphorous compounds. J Therm Anal Calorim. 2010;99:593–8.

    Article  CAS  Google Scholar 

  28. Stefano V, Romolo DR, Carla F. Kinetic study of decomposition for Co(II)- and Ni(II)-1,10-phenanthroline complexes intercalated in c-zirconium phosphate. J Therm Anal Calorim. 2009;97:805–10.

    Article  Google Scholar 

  29. Muraleedharan K, Kanan M, Ganga DT. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Burnham AK, Criado JM, Maqueda LAP, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  31. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  33. Gabal MA. Non-isothermal studies for the decomposition course of CdC2O4-ZnC2O4 mixture in air. Thermochim Acta. 2004;412:55–62.

    Article  CAS  Google Scholar 

  34. Budrugeac P, Segal E. On the use of Diefallah’s composite integralmethod for the non-isothermal kinetic analysis of heterogenous solid-gas reactions. J Therm Anal Calorim. 2005;82:677–80.

    Article  CAS  Google Scholar 

  35. Arslan H, Külcü N. Thermal decomposition kinetics of anilino-p-chlorophenylglyoksime complexes of cobalt(II), nickel(II) and copper(II). Turk J Chem. 2003;27:55–63.

    CAS  Google Scholar 

  36. Avsar G, Külcü N, Arslan H. Thermal behaviour of copper(II), nickel(II), cobalt(II) and palladium(II) complexes of N,N-dimethyl-N′-benzoylthiourea. Turk J Chem. 2002;26:607–15.

    CAS  Google Scholar 

  37. Sodhi GS. Correlation of thermal stability with structures for some metal complexes. Thermochim Acta. 1987;120:107–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Dr. Selma Erat (ETH-Zurich, Switzerland) and Prof. Dr. Murat Ozer for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih M. Emen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emen, F.M., Külcü, N. Thermal behaviors of N-pyrrolidine-N′-(2-chlorobenzoyl)thiourea and its Ni(II), Cu(II), and Co(III) complexes. J Therm Anal Calorim 109, 1321–1331 (2012). https://doi.org/10.1007/s10973-011-1811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1811-3

Keywords

Navigation