Journal of Thermal Analysis and Calorimetry

, Volume 109, Issue 2, pp 907–914 | Cite as

Experimental and numerical analysis of wood thermodegradation

Mass loss kinetics
  • A. Pétrissans
  • R. Younsi
  • M. Chaouch
  • P. Gérardin
  • M. Pétrissans


Torrefaction is a thermal treatment step in a temperature range of 210–240 °C, which aims to improve the dimensional stability and durability of wood. The mass loss kinetics for torrefaction of wood samples was studied using equipment specially conceived to measure mass losses during thermal treatment. Laboratory experiments were performed under nitrogen for heating rates of 0.1, 0.25, 1, and 2 °C min−1. A mathematical model for the kinetics of the thermodegradation process was used and validated. Measurements of temperature distribution and anhydrous mass loss were performed on dry sample of poplar wood during torrefaction in an inert atmosphere for different temperatures. The mathematical formulation describing the simultaneous heat and mass transfers requires coupled nonlinear partial differential equations. These unsteady-state mathematical model equations were solved numerically by the commercial package FEMLAB for the temperature under different treatment conditions. A detailed discussion of the computational model and the solution algorithm is given below. Once the validity of different assumptions of the model had been analyzed, the experimental results were compared with those calculated by the model. Acceptable agreement was achieved.


Heat treatment Modeling Reaction kinetics Thermodegradation Wood 


  1. 1.
    Finnish Thermowood Association. ThermoWood handbook. Helsinki, Finland. 2003.
  2. 2.
    Momohara I, Ohmura W, Kato H, Kubojima Y. Effect of high-temperature treatment on wood durability against the brown-rot fungus, Fomitopsis palustris, and the Termite, Coptotermes formosanus. In: 8th International IUFRO wood drying conference 2003. p. 284–287.Google Scholar
  3. 3.
    Shi JL, Kocaefe D, Amburgey T, Zhang J. A comparative study on brownrot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Holz Roh Werkst. 2007;65(5):353–8.CrossRefGoogle Scholar
  4. 4.
    Zammen A, Alen R, Kotilainen R. Heat behavior of Pinus sylvestris and Betula pendula at 200–230 °C. Wood Fiber Sci. 2000;32(2):138–43.Google Scholar
  5. 5.
    Tjeerdsma B, Militz H. Chemical changes in hydroheat wood: FTIR analysis of combined hydroheat and dry heat-treated wood. Holz Roh Werkst 2005;63(2):102–111.Google Scholar
  6. 6.
    Nguila IG, Pétrissans M, Lambert JL, Erhardt JJ, Gérardin P. XPS characterization of wood chemical composition after heat treatment. Surf Interface Anal. 2006;38(10):1336–42.CrossRefGoogle Scholar
  7. 7.
    Nguila IG, Petrissans M, Gérardin P. Chemical reactivity of heat-treated wood. Wood Sci Technol. 2007;41(2):157–68.CrossRefGoogle Scholar
  8. 8.
    Esteves B, Graça J, Pereira H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforshung. 2008;62(1):344–51.CrossRefGoogle Scholar
  9. 9.
    Fengel D, Wegener G. Wood-chemistry ultrastructure, reactions. Berlin, Germany: Walter de Gruyter; 1989.Google Scholar
  10. 10.
    Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P. Magnetic resonance studies of thermally modified wood. Holzforschung. 2002;56(6):648–54.CrossRefGoogle Scholar
  11. 11.
    Yildiz S, Gezer D, Yildiz U. Mechanical and chemical behaviour of spruce wood modified by heat. Build Environ. 2006;41(12):1762–6.CrossRefGoogle Scholar
  12. 12.
    Nuopponen M, Vuorinen T, Jamsa S, Viitaniemi P. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol. 2004;24(1):13–26.CrossRefGoogle Scholar
  13. 13.
    Gérardin P, Petric M, Pétrissans M, Erhrardt JJ, Lambert J. Evolution of wood surface free energy after heat treatment. Polym Degrad Stab. 2007;92(4):653–7.CrossRefGoogle Scholar
  14. 14.
    Nguila IG, Mounguengui S, Dumarcay S, Pétrissans M, Gérardin P. Evidence of char formation during wood heat treatment by mild pyrolysis. Polym Degrad Stab. 2007;92(6):997–1002.CrossRefGoogle Scholar
  15. 15.
    Mouras S, Girard P, Rousset P, Permadi P, Dirol D, Labat G. Propriétés physiques de bois peu durables soumis à un traitement de pyrolyse ménagée. Ann For Sci. 2002;59(3):317–26.CrossRefGoogle Scholar
  16. 16.
    Esteves B, Domingos I, Pereira H. Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200 °C. For Prod J. 2007;57(1/2):47–52.Google Scholar
  17. 17.
    Esteves B, Velez Marques A, Dominigos I, Pereira H. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol. 2007;41:193–207.CrossRefGoogle Scholar
  18. 18.
    Mazela B, Zakrzewski R, Grzeskowiak W, Cofta G, Bartkowiak M. Preliminary research on the biological resistance of thermally modified wood. In: Abstracts of the first european conference on wood modification, Ghent, Belgium; 2003.Google Scholar
  19. 19.
    Kamdem DP, Pizzi A, Jermannaud A. Durability of heat-treated wood. Holz Roh Werkst. 2002;60:1–6.CrossRefGoogle Scholar
  20. 20.
    Hakkou M, Pétrissans M, Gérardin P, Zoulalian A. Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab. 2006;91(2):393–7.CrossRefGoogle Scholar
  21. 21.
    Mitsui K, Takada H, Sugiyama M, Hasegawa R. Changes in the properties of light-irradiated wood with heat treatment: part 1. Effect of treatment conditions on the change in color. Holzforshung. 2001;55(6):601–5.CrossRefGoogle Scholar
  22. 22.
    Bekhta P, Niemz P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforshung. 2003;57(5):539–46.CrossRefGoogle Scholar
  23. 23.
    Mitsui K, Murata A, Kohara M, Tsuchikawa S. Color modification of wood by light-irradiation and heat treatment. In: Abstracts of the first European conference on wood modification. Ghent, Belgium; 2003.Google Scholar
  24. 24.
    Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A. Color stability of heat-treated wood during artificial weathering. Holz Roh Werkst. 2003;61(3):221–6.Google Scholar
  25. 25.
    Mitsui K, Murata A, Tolvaj L. Changes in the properties of light-irradiation wood with heat treatment: part 3. Monitoring by DRIFT spectroscopy. Holz Roh Werkst 2004; 62(3):164–168.Google Scholar
  26. 26.
    Hakkou M, Pétrissans M, El Bakali I, Gérardin P, Zoulalian A. Evolution of wood hydrophobic properties, during heat treatment of wood. In: Abstract of the first European conference on wood modification. Ghent, Belgium; 2003.Google Scholar
  27. 27.
    Hakkou M, Pétrissans M, Gérardin P, Zoulalian A. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab. 2005;89(1):1–5.CrossRefGoogle Scholar
  28. 28.
    Pétrissans M, Gerardin P, El bakali I, Serraj M. Wettability of heat-treated wood. Holzforschung. 2003;57(3):301–7.CrossRefGoogle Scholar
  29. 29.
    Kocaefe D, Poncsak S, Boluk Y. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources. 2008;3(2):517–37.Google Scholar
  30. 30.
    Santos AJ. Mechanical behavior of eucalyptus wood modified by heat. Wood Sci Technol. 2000;34(1):39–43.CrossRefGoogle Scholar
  31. 31.
    Yildiz S. Effects of heat treatment on water repellence and anti-swelling efficiency of beech wood. In: International research group on wood preservation, section 4-processes, N°IRG/WP 02-40223; 2002.Google Scholar
  32. 32.
    Unsal O, Ayrilmis N. Variations in compression strength and surface roughness of heat-treated Turkish river red gum. J Wood Sci. 2005;51(4):405–9.CrossRefGoogle Scholar
  33. 33.
    Degroot WF, Pan WP, Rahman D, Richards GN. First chemical events in pyrolysis of wood. J Anal Appl Pyrol. 1988;13(3):221–31.CrossRefGoogle Scholar
  34. 34.
    Welzbacher C, Brischke C, Rapp A. Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified wood. Wood Mat Sci Eng. 2007;2(2):66–76.CrossRefGoogle Scholar
  35. 35.
    Nguila IG, Pétrissans M, Pétrissans A, Gérardin P. Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polym Degrad Stab. 2009;94(3):365–8.CrossRefGoogle Scholar
  36. 36.
    Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A. Modeling of the pyrolysis of biomass particles: studies on kinetics, thermal and heat transfer effects. Can J Chem Eng. 1991;69(4):907–15.CrossRefGoogle Scholar
  37. 37.
    Weiland JJ, Guyonnet R, Gibert R. Analysis of controlled wood burning by combination of thermogravimetric analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy. J Therm Anal Calorim. 1998;51(1):265–74.CrossRefGoogle Scholar
  38. 38.
    Wagenaar BM, Prins W, Van Swaaij WPM. Pyrolysis of biomass in the rotating cone reactor: modeling and experimental justification. Chem Eng Sci. 1994;49(22):5109–26.Google Scholar
  39. 39.
    Di Blasi C, Branca C. Kinetics of primary product formation from wood pyrolysis. Ind Eng Chem Res. 2001;40(23):5547–56.CrossRefGoogle Scholar
  40. 40.
    Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V. Heat of wood pyrolysis. Fuel. 2003;82(1):81–91.CrossRefGoogle Scholar
  41. 41.
    Sadhukhan AK, Gupta P, Saha RK. Modeling and experimental studies on pyrolysis of biomass particles. J Anal Appl Pyrol. 2008;81(2):183–92.CrossRefGoogle Scholar
  42. 42.
    Rousset P, Turner Y, Donnot A, Perré P. The choice of a low-temperature pyrolysis model at the microscopic level for use in a macroscopic formulation. Anal For Sci. 2006;63(2):213–29.CrossRefGoogle Scholar
  43. 43.
    Grioui N, Halouani K, Zoulalian A, Halouani F. Thermogravimetric analysis and kinetics modeling of isothermal carbonization of olive wood in inert atmosphere. Thermochim Acta. 2006;440:23–30.CrossRefGoogle Scholar
  44. 44.
    Davis L, editor. Handbook of genetic algorithms, New York: Van Nostrand, Reinhold; 1991.Google Scholar
  45. 45.
    Deb K. Multi-objective optimization using evolutionary algorithms. USA: Wiley; 2001.Google Scholar
  46. 46.
    DeJong KA. Are genetic algorithms function optimizers? In: Manner R, Manderick B, editors, Proceedings of the 2nd conference on parallel problems solving from nature. North Holland; 1992. pp. 3–13.Google Scholar
  47. 47.
    Di Blasi C, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J Anal Appl Pyrol. 1997;40–41:287–303.CrossRefGoogle Scholar
  48. 48.
    Comsol AB. Femlab version 2.0, reference manual; 2000.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • A. Pétrissans
    • 1
  • R. Younsi
    • 2
  • M. Chaouch
    • 1
  • P. Gérardin
    • 1
  • M. Pétrissans
    • 1
  1. 1.LERMAB Université Nancy IVandoeuvre les NancyFrance
  2. 2.Département de Génie MécaniqueÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations