Skip to main content
Log in

The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organically modified clay minerals with high thermal stability are critical for synthesis and processing of clay-based nanocomposites. Two series of organo-montmorillonites have been synthesized using surfactants with different alkyl chain length. The organo-montmorillonites were characterized by X-ray diffraction and differential thermogravimetry, combining with molecule modelling. For surfactant with relatively short alkyl chain, the resultant organo-montmorillonite displays a small maximum basal spacing (ca. 1.5 nm) and most surfactants intercalate into montmorillonite interlayer spaces as cations with a small amount of surfactant molecules loaded in the interparticle pores with “house-of-cards” structure. However, for surfactant with relatively long alkyl chain, the resultant organo-montmorillonite displays a large maximum basal spacing (ca. 4.1 nm) and the loaded surfactants exist in three formats: intercalated surfactant cations, intercalated surfactant molecules (ionic pairs), and surfactant molecules in interparticle pores. The surfactant molecules (ionic pairs) in interparticle pores and interlayer spaces will be evaporated around the evaporation temperature of the neat surfactant while the intercalated surfactant cations will be evaporated/decomposed at higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith JA, Galan A. Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environ Sci Technol. 1995;29:685–92.

    Article  CAS  Google Scholar 

  2. Zhu LZ, Chen BL. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environ Sci Technol. 2000;34:2997–3002.

    Article  CAS  Google Scholar 

  3. Shen YH. Preparations of organobentonite using nonionic surfactants. Chemosphere. 2001;44:989–95.

    Article  CAS  Google Scholar 

  4. Yilmaz N, Yapar S. Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Appl Clay Sci. 2004;27:223–8.

    Article  CAS  Google Scholar 

  5. Theng BKG, Churchman GJ, Gates WP, Yuan G. Organically modified clays for pollutant uptake and environmental protection. In: Huang Q, Huang PM, Violante A, editors. Soil mineral microbe organic interactions: theories and applications. Berlin: Springer Verlag; 2008.

    Google Scholar 

  6. He HP, Ma YH, Zhu JX, Yuan P, Qing YH. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl Clay Sci. 2010;48:67–72.

    Article  CAS  Google Scholar 

  7. Xue SQ, Pinnavaia TJ. Methylene-functionalized saponite: a new type of organoclay with CH2 groups substituting for bridging oxygen centers in the tetrahedral sheet. Appl Clay Sci. 2010;48:60–6.

    Article  CAS  Google Scholar 

  8. Lagaly G. Characterization of clays by organic-compounds. Clay Miner. 1981;16:1–21.

    Article  CAS  Google Scholar 

  9. Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater. 1994;6:1017–22.

    Article  CAS  Google Scholar 

  10. Lee SY, Kim SJ. Expansion characteristics of organoclay as a precursor to nanocomposites. Colloids Surf A. 2002;211:19–26.

    Article  CAS  Google Scholar 

  11. Zhu JX, He HP, Guo JG, Yang D, Xie XD. Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chin Sci Bull. 2003;48:368–72.

    CAS  Google Scholar 

  12. He HP, Frost RL, Deng F, Zhu JX, Wen XY, Yuan P. Conformation of surfactant molecules in the interlayer of montmorillonite studied by C-13 MAS NMR. Clays Clay Miner. 2004;52:350–6.

    Article  CAS  Google Scholar 

  13. He HP, Ding Z, Zhu JX, Yuan P, Xi YF, Yang D, Frost RL. Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner. 2005;53:287–93.

    Article  CAS  Google Scholar 

  14. He HP, Frost RL, Bostrom T, Yuan P, Duong L, Yang D, Yunfel XF, Kloprogge JT. Changes in the morphology of organoclays with HDTMA+ surfactant loading. Appl Clay Sci. 2006;31:262–71.

    Article  CAS  Google Scholar 

  15. Zeng QH, Yu AB, Lu GQ, Standish RK. Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays. J Phys Chem B. 2004;108:10025–33.

    Article  CAS  Google Scholar 

  16. He HP, Galy J, Gerard JF. Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids. J Phys Chem B. 2005;109:13301–6.

    Article  CAS  Google Scholar 

  17. Heinz H, Vaia RA, Krishnamoorti R, Farmer BL. Self-assembly of alkylammonium chains on montmorillonite: effect of chain length, head group structure, and cation exchange capacity. Chem Mater. 2007;19:59–68.

    Article  CAS  Google Scholar 

  18. Dana K, Ganguly S, Ghatak S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:71–8.

    Article  Google Scholar 

  19. Hrachova J, Billik P, Fajnor VS. Influence of organic surfactants on structural stability of mechanochemically treated bentonite. J Therm Anal Calorim. 2010;101:161–8.

    Article  CAS  Google Scholar 

  20. Yao C, Ni RJ, Huang Y. Thermogravimetric analysis of organoclays intercalated with the gemini surfactants. J Therm Anal Calorim. 2009;96:943–7.

    Article  Google Scholar 

  21. Silva SML, Leite IF, Soares APS, Carvalho LH, Raposo CMO, Malta OML. Characterization of pristine and purified organobentonites. J Therm Anal Calorim. 2010;100:563–9.

    Article  Google Scholar 

  22. Yariv S. The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci. 2004;24:225–36.

    Article  CAS  Google Scholar 

  23. Hedley CB, Yuan G, Theng BKG. Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl Clay Sci. 2007;35:180–8.

    Article  CAS  Google Scholar 

  24. Sanchez-Martin MJ, del Hoyo C, Dorado C, Rodriguez-Cruz MS. Physico-chemical study of selected surfactant-clay mineral systems. J Therm Anal Calorim. 2008;94:227–34.

    Article  Google Scholar 

  25. Zidelkheir B, Abdelgoad M. Effect of surfactant agent upon the structure of montmorillonite X-ray diffraction and thermal analysis. J Therm Anal Calorim. 2008;94:181–7.

    Article  CAS  Google Scholar 

  26. Xie W, Gao ZM, Liu KL, Pan WP, Vaia R, Hunter D, Singh A. Thermal characterization of organically modified montmorillonite. Thermochim Acta. 2001;367:339–50.

    Article  Google Scholar 

  27. Xie W, Gao ZM, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:2979–90.

    Article  CAS  Google Scholar 

  28. Xie W, Xie RC, Pan WP, Hunter D, Koene B, Tan LS, Vaia R. Thermal stability of quaternary phosphonium modified montmorillonites. Chem Mater. 2002;14:4837–45.

    Article  CAS  Google Scholar 

  29. Li YQ, Ishida H. Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries. Langmuir. 2003;19:2479–84.

    Article  CAS  Google Scholar 

  30. Klapyta Z, Fujita T, Iyi N. Adsorption of dodecyl- and octadecyltrimethylammonium ions on a smectite and synthetic micas. Appl Clay Sci. 2001;19:5–10.

    Article  CAS  Google Scholar 

  31. Wang CC, Juang LC, Lee CK, Hsu TC, Lee JF, Chao HP. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. J Colloid Interface Sci. 2004;280:27–35.

    Article  CAS  Google Scholar 

  32. He HP, Zhou Q, Martens WN, Kloprogge TJ, Yuan P, Xi Y, Zhu JX, Frost RL. Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays Clay Miner. 2006;54:689–96.

    Article  Google Scholar 

  33. Zhu LZ, Zhu RL, Xu LH, Ruan XX. Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids. Colloids Surf A. 2007;304:41–8.

    Article  CAS  Google Scholar 

  34. Smith W, Forester TR. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph Model. 1996;14:136–41.

    CAS  Google Scholar 

  35. Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner. 1954;39:92–6.

    CAS  Google Scholar 

  36. Cygan RT, Guggenheim S, van Groos AFK. Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay. J Phys Chem B. 2004;108:15141–9.

    Article  CAS  Google Scholar 

  37. Dauberosguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and enegretics of ligand-binding to proteins—Escherichia-coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins. 1988;4:31–47.

    Article  CAS  Google Scholar 

  38. Greene-Kelly R. Dehydration of montmorillonite minerals. Miner Mag. 1955;30:604–15.

    Article  CAS  Google Scholar 

  39. Xi YF, Zhou Q, Frost RL, He HP. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. J Colloid Interface Sci. 2007;311:347–53.

    Article  CAS  Google Scholar 

  40. Chen D, Zhu JX, Yuan P, Yang SJ, Chen TH, He HP. Preparation and characterization of anion-cation surfactants modified montmorillonite. J Therm Anal Calorim. 2008;94:841–8.

    Article  CAS  Google Scholar 

  41. Levitz P, Tchoubar D. Disordered porous solids: from chord distributions to small-angle scattering. Journal De Physique I. 1992;2:771–90.

    Article  CAS  Google Scholar 

  42. Yuan P, He HP, Bergaya F, Wu DQ, Zhou Q, Zhu JX. Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure. Microporous Mesoporous Mater. 2006;88:8–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN101), the National Science Fund for Distinguished Young Scholars (Grant No. 40725006), and the National Natural Science Foundation of China (Grant No. U0933003, 40972034). This is contribution No. IS-1351 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Shen, W., Ma, Y. et al. The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability. J Therm Anal Calorim 109, 301–309 (2012). https://doi.org/10.1007/s10973-011-1761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1761-9

Keywords

Navigation