Skip to main content
Log in

Synthesis and thermal characterization of sulfur containing methionine bridged cobalt(III) and copper(II) complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The sulfur containing amino acid bridging polynuclear transition metal complex has been synthesized and characterized by different measurements such as UV–Vis, FT–IR, C–H–N–S, TG–DTA, ICP-AES, differential scanning calorimeter (DSC), and XRD. DSC has showed negative specific heat of this polynuclear system and has used to evaluate some thermodynamic constants like activation energy (E a), frequency factor (A), enthalpy, and entropy of that system. The specific heat capacity is measured at heating rate of 10 °C min−1 in room atmosphere of this polynuclear complex. The characterization of this complex has showed five Co(III) and four Cu(II) atoms and this complex contained ten sulfur containing methionine amino acid units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meisenheimer J. Über komplexverbindungen des chroms und kobalts mit aliphatischen und aromatischen aminen. Justus Liebigs Annalen der Chemi. 1924;438:217–78.

    Article  CAS  Google Scholar 

  2. Liu CT, Douglas BE. Circular dichroism of coordination compounds III cobalt(III) complexes of optically active amino acids. Inorg Chem. 1964;3(10):1356–61.

    Article  CAS  Google Scholar 

  3. Alexander MD, Busch DH. Preparation and characterization of cobalt(III) complexes of glycine esters. Inorg Chem. 1966;5(4):602–6.

    Article  CAS  Google Scholar 

  4. Hey RW, Bennett R, Barnes DJ. Base hydrolysis of amino-acid esters and amides in the co-ordination sphere of cobalt(III). Part I. Hydrolysis of methyl 6-aminohexanoate. Dalton Trans. 1972; 1524–29.

  5. Buckingham DA, Foster DM, Sargeson AM. Cobalt(III)-promoted hydrolysis of glycine amides. Intramolecular and intermolecular hydrolysis following the base hydrolysis of the cis-[Co(en)2Br(glyNR1R2]2+ ions. J Am Chem Soc. 1970;92(21):6151–8.

    Article  CAS  Google Scholar 

  6. Kishore V, Rolniak TM, Ramakrishna K, Sorenson JRJ. The anti-ulcer activities of copper complexes. In: Sorenson JRJ, editor. Inflammatory diseases and copper. Clifton: Humana Press; 1982. p. 363–373.

  7. Boila RJ, Devlin TJ, Drysdale RA, Lillie LE. Injectable Cu complexes as supplementary Cu for grazing cattle. Can J Anim Sci. 1984;64:365–78.

    Article  CAS  Google Scholar 

  8. McDowell LR. Minerals in animal and human nutrition. San Diego: Academic press; 1992. p. 200–2.

    Google Scholar 

  9. Corbin KM, Glerup J, Hodgson DJ, Lynn MH, Michelsen K, Nielsen KM. Heteronuclear trinuclear complex ions of the type [MII{Cr(A)4(OH)2}2]4+. Inorg Chem. 1993;32(1):18–26.

    Article  CAS  Google Scholar 

  10. Rettig SJ, Storr A, Summers DA, Thompson RC, Trotter J. Transition metal azolates from metallocenes. 2. Synthesis, X-ray structure, and magnetic properties of a three-dimensional polymetallic iron(II) imidazolate complex, a low-temperature weak ferromagnet. J Am Chem Soc. 1997;119(37):8675–80 (there in).

    Article  CAS  Google Scholar 

  11. Swain T. Synthesis, structural and thermal characterization of metaphosphatecobalt(II) salt. J Therm Anal Calorim. 2011;103(3):1111–7.

    Article  CAS  Google Scholar 

  12. Hanggi P, Ingold G-L. Quantum Brownian motion and the third law of thermodynamics. Acta Phys Pol B. 2006;37:1537–50.

    Google Scholar 

  13. Horhammer C, Buttner H. Information and entropy in quantum Brownian motion thermodynamic entropy versus von Neumann entropy. J Stat Phys. 2008;133:1161–74.

    Article  Google Scholar 

  14. Bandyopadhyay M. Quantum thermodynamics of a charged magneto-oscillator coupled to a heat bath. J Stat Mech Theory Exp. 2009. doi:10.1088/1742-5468/2009/05/P05002.

  15. Hanggi P, Ingold G-L,Talkner P. Finite quantum dissipation: the challenge of obtaining specific heat. New J Phys. 2008. doi:10.1088/1367-2630/10/11/115008.

  16. Wang C-Y, Bao J-D. The third law of quantum thermodynamics in the presence of anomalous couplings. Chin Phys Lett. 2008;25:429–32.

    Article  CAS  Google Scholar 

  17. Kumar J, Sreeram PA, Dattagupta S. Low-temperature thermodynamics in the context of dissipative diamagnetism. Phys Rev E. 2009. doi:10.1103/PhysRevE.79.021130.

  18. Ingold G-L, Hanggi P, Talkner P. Specific heat anomalies of open quantum systems. 2009. doi:10.1103/PhysRevE.79.061105.

  19. Wiesniak M, Vedral V, Brukner C. Heat capacity as an indicator of entanglement. Phys Rev B. 2008. doi:10.1103/PhysRevB.78.064108.

  20. Caldena AO, Leggett AJ. Quantum tunnelling in a dissipative system. Ann Phys. 1983;149:374–456.

    Article  Google Scholar 

  21. Grabert H, Weiss U, Talkner P. Quantum theory of the damped harmonic oscillator. Z Phys B. 1984;55(1):87–94.

    Article  Google Scholar 

  22. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W. Dynamics of the dissipative two-state system. Rev Mod Phys. 1987;59:1–85.

    Article  CAS  Google Scholar 

  23. Grabert H, Schramm P, Ingold G-L. Quantum Brownian motion: the functional integral approach. Phys Rep. 1988;168(3):115–207.

    Article  CAS  Google Scholar 

  24. Ford GW, Lewis JT, Connell RFO. Quantum oscillator in a blackbody radiation field II. Direct calculation of the energy using the fluctuation-dissipation theorem. Ann Phys. 1988;185(2):270–83.

    Article  CAS  Google Scholar 

  25. Hanke A, Zwerger W. Density of states of a damped quantum oscillator. Phys Rev E. 1995;52(6):6875–8.

    Article  CAS  Google Scholar 

  26. Dittrich T, Hanggi P, Ingold G-L, Kramer B, Schon G, Zwerger W. Quantum transport and dissipation. Chap. 4. New York: Wiley; 1998.

    Google Scholar 

  27. Ford GW, Connell RFO. Quantum thermodynamic functions for an oscillator coupled to a heat bath. Phys Rev B. 2007. doi:10.1103/PhysRevB75.134301.

  28. Ingold G-L. Path integrals and their application to dissipative quantum systems. Lect Notes Phys. 2002;611:1–53.

    Article  Google Scholar 

  29. Krishnamurthy M. Modified synthesis of trans-dichloro-bis-ethylenediamine cobalt(III) chloride. J Inorg Nucl Chem. 1972;34(12):3915–6.

    Article  CAS  Google Scholar 

  30. Freeman HC, Sargeson AM. Synthesis, structure, and stereochemistry of some cysteine- and penicillaminecobalt(III) complexes. Inorg Chem. 1978;17(12):3513–21.

    Article  CAS  Google Scholar 

  31. Kim HJ, Youm KT, Yang JS, Jun MJ. N,N′-Dimethylethylenediamine-N,N′-di-α-butyric acid cobalt(III) complexes utilizing oxidation of sulfur of S-methyl-l-cysteine. Bull Korean Chem Soc. 2002;23(6):851–5.

    Article  CAS  Google Scholar 

  32. Jackson WG, Sargeson AM, Whimp PO. Synthesis and stereochemistry of co-ordinated sulphenate and sulphinate. J Chem Soc Chem Commun. 1976;934–35.

  33. Kothari VM, Busch DH. Cobalt(III) complexes of cysteine and cysteine derivatives. Inorg Chem. 1969;8:2276–80.

    Article  CAS  Google Scholar 

  34. Radonovic DJ. Optical activity of cobalt(III), chromium(III) and rhodium(III) complexes with aminopolycarboxylate EDTA-type and related ligands. Coord Chem Rev. 1984;54:159–261.

    Article  Google Scholar 

  35. Park H, Yang JS, Jun MJ. l-Cysteinesulfenato and l-cysteinesulfinato cobalt(III) complexes of N,N′-dimethylethylenediamine-N,N′-diacetic acid. Bull Korean Chem Soc. 2002;23(3):500–2.

    Article  CAS  Google Scholar 

  36. Cotton FA, Wilkinson G. Advanced inorganic chemistry. 3rd ed. London: Interscience; 1972.

    Google Scholar 

  37. Wagner CC, Baran EJ. Vibrational spectra of bis(l-methioninato)copper(II). Acta Farm Bonaer. 2002;21(4):287–90.

    CAS  Google Scholar 

  38. Guillot R, Muzet N, Dahaoui S, Lecomte C, Jelsch C. Experimental and theoretical charge density of dl-alanyl-methionine. Acta Cryst. 2001;B57(5):567–78.

    CAS  Google Scholar 

  39. Makotchenko EV, Baidina IA, Yu.Naumov D. Synthesis and crystal structure of tris(ethylenediamine)cobalt(III) bis(tetrachloroaurate(III)) chloride. J Struct Chem. 2006;47(3):499–503.

    Article  CAS  Google Scholar 

  40. Wang Q, Bi CF, Fan YH, Zhang X, Zuo J, Liu SB. A novel copper(II) complex with schiff base derived from o-vanillin and l-methionine: syntheses and crystal structures. Russ J Coord Chem. 2011;37(3):228–34.

    Article  CAS  Google Scholar 

  41. Suksrichavalit T, Prachayasittikul S, Piacham T, Ayudhya CIN, Nantasenamat C, Prachayasittikul V. Copper complexes of nicotinic-aromatic carboxylic acids as superoxide dismutase mimetics. Molecules. 2008;13(12):3040–56.

    Article  CAS  Google Scholar 

  42. Zhu H-L, Liu X-Y, Wang Y-F, Wang D-Q. Crystal structure of bis[N-(2-(2-hydroxyethylamino)ethyl)salicylideneimine]cobalt(III) nitrate, C22H30CoN5O7. Z Kristallogr. 2003;NCS218:257–8.

    Google Scholar 

  43. Mikata Y, Fujimoto T, Sugal Y, Yano S. Control of intramolecular ether-oxygen coordination in the crystal structure of copper(II) complexes with dipicolylamine-based ligands. Eur J Inorg Chem. 2007;2007(8):1143–9.

    Article  Google Scholar 

Download references

Acknowledgements

T.S. thanks the Department of Chemistry, Utkal University, for providing support on this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilochan Swain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 444 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, T. Synthesis and thermal characterization of sulfur containing methionine bridged cobalt(III) and copper(II) complex. J Therm Anal Calorim 109, 365–372 (2012). https://doi.org/10.1007/s10973-011-1751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1751-y

Keywords

Navigation