Skip to main content
Log in

Crystal structure and thermochemical properties of bis(1-octylammonium) tetrachlorocuprate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bis(1-octylammonium) tetrachlorocuprate (1-C8H17NH3)2CuCl4(s) was synthesized by the method of liquid phase reaction. The crystal structure of the compound has been determined by X-ray crystallography. The lattice potential energy was obtained from the crystallographic data. Molar enthalpies of dissolution of (1-C8H17NH3)2CuCl4(s) at various molalities were measured at 298.15 K in the double-distilled water by means of an isoperibol solution-reaction calorimeter, respectively. In terms of Pitzer’s electrolyte solution theory, the molar enthalpy of dissolution of (1-C8H17NH3)2CuCl4(s) at infinite dilution was determined to be \( \Updelta_{\rm s} H_{\text{m}}^{\infty } = \, - 5. 9 7 2\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \) and the sums of Pitzer’s parameters \( (4\beta_{{{\text{C}}_{ 8} {\text{H}}_{ 1 7} {\text{NH}}_{ 3} , {\text{Cl}}}}^{ ( 0 )L} + 2\beta_{\text{Cu,Cl}}^{ ( 0 )L} + \theta_{{{\text{C}}_{ 8} {\text{H}}_{ 1 7} {\text{NH}}_{ 3} , {\text{Cu}}}}^{L} ) \) and \( (2\beta_{{{\text{C}}_{ 8} {\text{H}}_{ 1 7} {\text{NH}}_{ 3} , {\text{Cl}}}}^{ ( 1 )L} + \beta_{\text{Cu,Cl}}^{ ( 1 )L} ) \) were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jakubas R, Bator G, Gosniowska M, Ciunik Z, Baran J, Lefebvre J. Crystal structure and phase transition of [(CH3)2NH2]GaCl4. J Phys Chem Solids. 1997;58:989–98.

    Article  CAS  Google Scholar 

  2. Li WP, Zhang DS, Zhang TP, Wang TZ, Ruan DS, Xing DQ, Li HB. Study of solid–solid phase change of (n-C n H2n+1NH3)2MCl4 for thermal energy storage. Thermochim Acta. 1999;326:183–6.

    Article  CAS  Google Scholar 

  3. Wu KZ, Zhang JJ, Liu XD. Subsolidus phase diagram of binary system of thermotropic phase transitions compounds (n-C n H2n+1NH3)2MnCl4 (n = 12, 14, 16). Thermochim Acta. 2009;483:55–7.

    Article  CAS  Google Scholar 

  4. Kang JK, Choy JH, Madeleine RL. Phase transition behavior in the perovskite-type layer compound (n-C12H25NH3)2CuCl4. J Phys Chem Solids. 1993;54:1567–77.

    Article  CAS  Google Scholar 

  5. Yang WW, Di YY, Li J, Kong YX. Thermochemistry on ephedrine hydrochloride and N-methylephedrine hydrochloride. J Chem Thermodyn. 2009;41:945–50.

    Article  CAS  Google Scholar 

  6. Dan WY, Di YY, Kong YX, Wang Q, Yang WW, Wang DQ. Crystal structure and solid–solid phase transition of the complex (C11H18NO)2CuCl4(s). J Therm Anal Calorim. 2010;102:291–6.

    Article  CAS  Google Scholar 

  7. Xue BD, Yang Q, Chen SP, Gao SL. Synthesis, crystal structure, and thermodynamics of a high-nitrogen copper complex with N,N-bis-(1(2)H-tetrazol-5-yl) amine. J Therm Anal Calorim. 2010;101:997–1002.

    Article  CAS  Google Scholar 

  8. Di YY, Tan ZC, Li LW, Gao SL. Thermochemistry on the coordination compounds of zinc sulphate with several L-a-amino acids. J Chem Thermodyn. 2006;38:884–8.

    Article  CAS  Google Scholar 

  9. Liu YP, Di YY, Dan WY, He DH, Kong YX, Yang WW. Thermochemistry on dodecylamine hydrochloride and bis-dodecylammonium tetrachlorozincate. J Therm Anal Calorim. 2011;103:987–93.

    Article  CAS  Google Scholar 

  10. Jenkins HDB, Glasser L. Ionic Hydrates, M p X q ·nH2O: lattice energy and standard enthalpy of formation estimation. Inorg Chem. 2002;41:378–88.

    Google Scholar 

  11. Kong YX, Di YY, Yang WW, Lü YF, Tan ZC. Crystal structure, phase transition, and thermodynamic properties of bis-dodecylammonium tetrachlorozincate (C12H25NH3)2ZnCl4(s). Chin J Chem. 2010;28:521–30.

    Article  Google Scholar 

  12. Yang JZ, Pitzer KS. Thermodynamics of electrolyte mixtures. Activity and osmotic coefficients consistent with the higher-order limiting law for symmetrical mixing. J Solut Chem. 1988;17:909–24.

    Article  CAS  Google Scholar 

  13. Phutela RC, Pitzer KS. Thermodynamics of electrolyte mixtures. Enthalpy and the effect of temperature on the activity coefficient. J Solut Chem. 1986;15:649–62.

    Article  CAS  Google Scholar 

  14. Pitzer KS. Activity coefficients in electrolyte solutions. 2nd ed. Boca Raton: CRC Press; 1991. p. 75–153.

    Google Scholar 

  15. Pitzer KS. Thermodynamics of unsymmetrical electrolyte mixtures. Enthalpy and heat capacity. J Phys Chem. 1983;87:2360–4.

    Article  CAS  Google Scholar 

  16. Yang WW, Di YY, Kong YX, Tan ZC. Low-temperature heat capacities and standard molar enthalpy of formation of pyridine-2,6-dicarboxylic acid. Chin Phys B. 2010;19:060517-1–7.

    Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Natural Science Foundations of China under the contract NSFC No. 20673050 and 20973089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Di.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y.P., Di, Y.Y., Dan, W.Y. et al. Crystal structure and thermochemical properties of bis(1-octylammonium) tetrachlorocuprate. J Therm Anal Calorim 109, 287–293 (2012). https://doi.org/10.1007/s10973-011-1737-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1737-9

Keywords

Navigation