Skip to main content
Log in

Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolytic characteristics and kinetics of pistachio shell were studied using a thermogravimetric analyzer in 50–800 °C temperature range under nitrogen atmosphere at 2, 10, and 15 °C min−1 heating rates. Pyrolysis process was accomplished at four distinct stages which can mainly be attributed to removal of water, decomposition of hemicellulose, decomposition of cellulose, and decomposition of lignin, respectively. The activation energies, pre-exponential factors, and reaction orders of active pyrolysis stages were calculated by Arrhenius, Coats–Redfern, and Horowitz–Metzger model-fitting methods, while activation energies were additionaly determined by Flynn–Wall–Ozawa model-free method. Average activation energies of the second and third stages calculated from model-fitting methods were in the range of 121–187 and 320–353 kJ mol−1, respectively. The FWO method yielded a compatible result (153 kJ mol−1) for the second stage but a lower result (187 kJ mol−1) for the third stage. The existence of kinetic compensation effect was evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK. Characterization of Canadian biomass for alternative renewable fuel. Renew Energy. 2010;35:1624–31.

    Article  CAS  Google Scholar 

  2. Commandré JM, Lahmidi H, Salvador S, Dupassieux N. Pyrolysis of wood at high temperature: the influence of experimental parameters on gaseous products. Fuel Process Technol. 2010;92(5):837–44. doi:10.1016/j.fuproc.2010.07.009.

    Article  Google Scholar 

  3. Isa KM, Daud S, Hamidin N, Ismail K, Saad SA, Kasim FH. Thermogravimetric analysis and the optimization of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind Crop Prod. 2011;33(2):481–7.

    Article  CAS  Google Scholar 

  4. Valden MV, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35:232–42.

    Article  Google Scholar 

  5. Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T. Pyrolysis characteristics and kinetics of the marine microalge Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65.

    Article  Google Scholar 

  6. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–89.

    Article  CAS  Google Scholar 

  7. Wang Z, Cao J, Wang J. Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. J Anal Appl Pyrolysis. 2009;84:179–84.

    Article  CAS  Google Scholar 

  8. Hu S, Jess A, Xu M. Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel. 2007;86:2778–88.

    Article  CAS  Google Scholar 

  9. Aboulkas A, El harfi K, El bouadili A, Nadifiyine M, Benchanaa M, Mokhlisse A. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Process Technol. 2009;90:722–8.

    Article  CAS  Google Scholar 

  10. Yang Q, Wu S, Lou R, Lv G. Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis. 2010;87:65–9.

    Article  CAS  Google Scholar 

  11. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102(2):485–91.

    Article  CAS  Google Scholar 

  12. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91(1):1–33.

    Google Scholar 

  13. Sheeba KN, Babu JSC, Jaisankar S. The reaction kinetics for coir pith pyrolysis in the thermogravimetric analyzer. Energy Sour. Part A. 2010;32(19):1837–50.

    Article  Google Scholar 

  14. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol. 2009;100:1413–8.

    Article  CAS  Google Scholar 

  15. Syed S, Quadaih R, Talab I, Janajreh I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel. 2011;90(4):1631–7.

    Google Scholar 

  16. Lu C, Song W, Lin W. Kinetics of biomass catalytic pyrolysis. Biotechnol Adv. 2009;27:583–7.

    Article  CAS  Google Scholar 

  17. Haykiri-Acma H, Yaman S. Thermal reactivity of rapeseed (Brassica napus L.) under different gas atmospheres. Bioresour Technol. 2008;99:237–42.

    Article  CAS  Google Scholar 

  18. Hui Z, Huaxiao Y, Mengmeng Z, Song Q. Pyrolysis characteristics and kinetics of macroalgae biomass using thermogravimetric analyzer. Proc World Acad Sci Eng Technol. 2010;65:1161–6.

    Google Scholar 

  19. Lou R, Wu S-B. Pyrolysis characteristics of rice straw emal. Cellul Chem Technol. 2008;42(7–8):371–80.

    Google Scholar 

  20. Wang S, Jiang XM, Wang N, Yu LJ, Li Z, He PM. Research on pyrolysis characteristics of seaweed. Energy Fuels. 2007;21(6):3723–9.

    Article  CAS  Google Scholar 

  21. Slovák V, Šušák P. Pitch pyrolysis kinetics from single TG curve. J Anal Appl Pyrolysis. 2004;72:249–52.

    Article  Google Scholar 

  22. Vijayakumar CT, Vinayagamoorthi S, Fink JK, Sivasamy P. Characterization of low rank alpine coals: thermogravimetric studies. J Anal Appl Pyrolysis. 2006;76:191–7.

    Article  CAS  Google Scholar 

  23. Tonbul Y. Pyrolysis of pistachio shell as a biomass. J Therm Anal Calorim. 2008;91(2):641–7.

    Article  CAS  Google Scholar 

  24. Zhao Y, Bie R, Lu J, Xiu T. Kinetic study on pyrolysis of NSSC black liquor in a nitrogen atmosphere. Chem Eng Commun. 2010;197(7):1033–47.

    Article  CAS  Google Scholar 

  25. Li D, Chen L, Zhang X, Ye N, Xing F. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenergy. 2011;35(5):165–77.

    Google Scholar 

  26. Li D, Chen L, Yi X, Zhang X, Ye N. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol. 2010;101:7131–6.

    Article  CAS  Google Scholar 

  27. Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-1267-x.

  28. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101:4584–92.

    Article  CAS  Google Scholar 

  29. Lapuerta M, Hernández JJ, Rodríguez J. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy. 2004;27:385–91.

    Article  CAS  Google Scholar 

  30. Janković B, Adnadević B, Jovanović J. Non-isothermal kinetics of dehydration of equilibrium swollen poly(acrylic acid) hydrogel. J Therm Anal Calorim. 2005;82:7–13.

    Article  Google Scholar 

  31. L’vov BV. Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology. Berlin: Springer; 2007.

    Google Scholar 

  32. Rodríguez RP, Sierens R, Verhelst S. Thermal and kinetic evaluation of biodiesel derived from soybean oil and higuereta oil. J Therm Anal Calorim. 2009;96(3):897–901.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Işık Yavuz for her valuable help during the analyses. The author is also grateful to Dr. Dilek Duranoğlu and Prof. Dr. Esen Bolat for their continuous support throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korkut Açıkalın.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Açıkalın, K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim 109, 227–235 (2012). https://doi.org/10.1007/s10973-011-1714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1714-3

Keywords

Navigation