Skip to main content
Log in

Thermogravimetric analysis on gasification reactivity of Hailar lignite

Influence of inherent mineral matters and external ash

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Comparative studies on the Hailar lignite pyrolysis/gasification characteristics at N2/CO2 atmosphere and the influence of inherent mineral matters, external ash and pyrolysis temperature on its reactivity during gasification at CO2 atmosphere were conducted by non-isothermal thermogravimetric analysis, FTIR, and X-ray diffraction (XRD) analysis. Thermogravimetric test results show that the atmosphere of N2 or CO2 almost has no effects on the pyrolysis behavior, and the gasification reaction under CO2 atmosphere occurs over 943 K at the heating rate of 40 K min−1. The external ash prepared at 1173 and 1223 K shows a certain catalytic effect on promoting the gasification reaction, although the inherent mineral matters of Hailar lignite are found in stronger catalytic effects on gasification than the external ash. The lignite gasification reactivity decreases with increasing pyrolytic temperature between 1073 and 1273 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen WY, Xu RN. Clean coal technology development in China. Energy Policy. 2008;38:2123–30.

    Article  Google Scholar 

  2. Zhou P. Chinese coal properties, classification and utilization. 1st ed. Beijing: Chemical Industry Press; 2001.

    Google Scholar 

  3. Kabe T, Ishihara A, Qian EW, Sutrisna IP, Kabe Y. Coal and coal-related compounds: structures, reactivity and catalytic reactions. Amsterdam: Elsevier Besloten Vennootschap; 2004.

    Google Scholar 

  4. Ling DQ, Xie KC. Kinetics of coal gasification and role of minerals. 1st ed. Taiyuan: Shanxi Education Science Press; 1990.

    Google Scholar 

  5. Skodras G, Sakellaropoulos GP. Mineral matter effects in lignite gasification. Fuel Process Technol. 2002;77–78:151–8.

    Article  Google Scholar 

  6. Samaras P, Diamadopoulos E, Sakellaropoulos GP. The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide. Fuel. 1996;75:1108–14.

    Article  CAS  Google Scholar 

  7. Köpsel R, Zabawski H. Catalytic effects of ash components in low rank coal gasification: 1. Gasification with carbon dioxide. Fuel. 1990;69:275–81.

    Article  Google Scholar 

  8. Köpsel R, Zabawski H. Catalytic effects of ash components in low rank coal gasification: 2. Gasification with steam. Fuel. 1990;69:282–8.

    Article  Google Scholar 

  9. Otto K, Bartosiewicz L, Shelef M. Catalysis of carbon-steam gasification by ash components from two lignites. Fuel. 1979;58:85–91.

    Article  CAS  Google Scholar 

  10. Yücel H, Çakal GÖ, Gürüz AG. Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermogravimetric analysis. J Anal Appl Pyrol. 2007;80:262–8.

    Article  Google Scholar 

  11. Zhang LX, Huang JJ, Fang YT, Wang Y. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2. Energy Fuel. 2006;20:1201–9.

    Article  CAS  Google Scholar 

  12. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL. CO2 gasification of Argentinean coal chars: a kinetic characterization. Fuel Process Technol. 2001;74:161–76.

    Article  CAS  Google Scholar 

  13. Sun QL, Li W, Chen HK, Li BQ. The CO2-gasification and kinetics of Shenmu maceral chars with and without catalyst. Fuel. 2004;83:1787–93.

    Article  CAS  Google Scholar 

  14. Jenkins RG, Nandi SP, Walker PL. Reactivity of heat-treated coals in air at 500°C. Fuel. 1973;52:288–93.

    Article  CAS  Google Scholar 

  15. Cai HY, Guell AJ, Chatzakis IN. Combustion reactivity and morphological change in coal chars: effect of pyrolysis temperature, heating rate and pressure. Fuel. 1996;75:15–24.

    Article  CAS  Google Scholar 

  16. Brown RC, Liu Q, Norton G. Catalytic effects observed during the co-gasification of coal and switchgrass. Biomass Bioenerg. 2000;18:499–506.

    Article  CAS  Google Scholar 

  17. Gong XZ, Guo ZC, Wang Z. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3. Combust Flame. 2009;157:351–6.

    Article  Google Scholar 

  18. Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.

    Article  CAS  Google Scholar 

  19. Dumanli AU, Taş S, Yürüm Y. Co-firing of biomass with coals. Part 1. Thermogravimetric kinetic analysis of combustion of fir (Abies bornmulleriana) wood. J Therm Anal Calorim. 2011;103:925–33.

    Article  CAS  Google Scholar 

  20. Aboulkas A, El Harfi K, El Bouadili A, Nadifiyine M. Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate). J Therm Anal Calorim. 2010;100:323–30.

    Article  CAS  Google Scholar 

  21. Niu SL, Lu CM, Han KH, Zhao JL. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. J Therm Anal Calorim. 2009;98:267–74.

    Article  CAS  Google Scholar 

  22. Charland JP, MacPhee JA, Giroux L, Price JT, Khan MA. Application of TG-FTIR to the determination of oxygen content of coals. Fuel Process Technol. 2003;81:211–21.

    Article  CAS  Google Scholar 

  23. Hughes RW, Lu D, Anthony EJ, Wu Y. Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Ind Eng Chem Res. 2004;43:5529–39.

    Article  CAS  Google Scholar 

  24. Öztaş NA, Yürüm Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter. Fuel. 2000;79:1221–7.

    Article  Google Scholar 

  25. Bellamy LJ. The infrared spectra of complex molecules. 2nd ed. London: Chapman and Hall; 1975.

    Google Scholar 

  26. Painter PC, Rimmer SM, Snyder RW, Davis A. A Fourier transform infrared study of mineral matter in coal: the application of a least squares curve-fitting program. Appl Spectrosc. 1981;35:102–6.

    Article  CAS  Google Scholar 

  27. Nyquist RA, Kagel RO. Infrared spectra of inorganic compounds. New York: Academic Press; 1971.

    Google Scholar 

  28. Painter PC, Snyder RW, Youtcheff J, Given PH, Gong H, Suhr N. Analysis of kaolinite in coal by infrared spectroscopy. Fuel. 1980;59:364–6.

    Article  CAS  Google Scholar 

  29. Finkelman RB, Fiene FL, Painter PC. Determination of kaolinite in coal by infrared spectroscopy-a comment. Fuel. 1981;69:643–4.

    Article  Google Scholar 

  30. Bai J, Li W, Li CZ, Bai ZQ, Li BQ. Influences of minerals transformation on the reactivity of high temperature char gasification. Fuel Process Technol. 2010;91:404–9.

    Article  CAS  Google Scholar 

  31. Zhu XY, Song B, Kim D, Kang SK, Lee S, Jeon S, Choi Y, Byoun Y, Moon W, Lee J, Kim H, Lee H, Shim J. Kinetic study on catalytic gasification of a modified sludge fuel. Particuology. 2008;6:258–64.

    Article  CAS  Google Scholar 

  32. Asami K, Sears P, Furimsky E, Ohtsuka Y. Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts. Fuel Process Technol. 1996;47:139–51.

    Article  CAS  Google Scholar 

  33. Ohme H, Suzuki T. Mechanisms of CO2 gasification of carbon catalyzed with Group VIII metals. 1. Iron-catalyzed CO2 gasification. Energy Fuel. 1996;10:980–7.

    Article  CAS  Google Scholar 

  34. Suzuki T, Inoue K, Watanabe Y. Temperature-programmed desorption and carbon dioxide-pulsed gasification of sodium- or iron-loaded Yallourn coal char. Energy Fuel. 1988;5:653–79.

    Google Scholar 

  35. Furimsky E, Sears P. Iron-catalyzed gasification of char in CO2. Energy Fuel. 1988;2:634–9.

    Article  CAS  Google Scholar 

  36. Huang YQ, Yin XL, Wu CZ, Wang CW, Xie JJ, Zhou ZQ, Ma LL, Li HB. Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnol Adv. 2009;27:568–72.

    Article  CAS  Google Scholar 

  37. Zhou JH, Kuang JP, Zhou ZJ, Lin M, Liu JZ. Research on alkali-catalysed CO2-gasification of coal black liquor slurry char and coal water slurry char. Proceedings of the CSEE. 2006;26:149–55.

    Google Scholar 

Download references

Acknowledgements

Financial support from the Project of Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-396) and National Natural Science Foundation of China (Grant No. 20221603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, A., Wang, Z., Song, W. et al. Thermogravimetric analysis on gasification reactivity of Hailar lignite. J Therm Anal Calorim 109, 337–343 (2012). https://doi.org/10.1007/s10973-011-1712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1712-5

Keywords

Navigation