Skip to main content
Log in

Thermoanalytical, magnetic and structural study of Co(II) complexes with substituted salicylaldehydes and neocuproine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, simultaneous TG/DTG-DTA technique was used for two cobalt(II) complexes with neocuproine(neoc) and the anion of a substituted salicylaldehyde ligand (X-salo) (X = 3-OCH3, or 5-CH3) with the general formula [Co(X-salo)2(neoc)], to determine their thermal degradation in inert atmosphere, which was found to be a multi-step decomposition related to the release of the ligand molecules. The solid material at 1300 °C (verified with PXRD) was a mixture of carbonaceous metal cobalt. Evolved gas analysis by coupled TG-MS verified the elimination of a formaldehyde molecule in the first decomposition stage, initially proposed by the percentage mass loss data. By single-crystal X-ray diffraction analysis an octahedral geometry of the complex [Co(3-OCH3-salo)2(neoc)] was found. The variable temperature magnetic susceptibility measurements showed a paramagnetic nature of the complexes, in accordance with their molecular structure. Finally, for the determination of the activation energy (E) two different methods (the isoconversional methods of Ozawa, Flynn and Wall (OFW) and Friedman) were used comparatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prasad RN, Agrawal A. Synthesis and spectroscopic studies of mixed ligand complexes of cobalt(II) with salicylaldehyde, hydroxyarylketones and beta-diketones. J Indian Chem Soc. 2006;83(1):75–7.

    CAS  Google Scholar 

  2. Hussain ST, Ahmad H, Atta MA, Afzal M, Saleem M. High performance liquid chromatography (HPLC), atomic absorption spectroscopy (AAS) and infrared spectroscopy determination and solvent extraction of uranium, using bis(salicylaldehyde) propylene diamine as complexing agent. J Trace Microprobe Tech. 1998;16(2):139–49.

    CAS  Google Scholar 

  3. Sajith P, Ummer MT, Mandal N, Mandot SK, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS, Kuriakose P. Synthesis of cobalt complexes and their evaluation as an adhesion promoter in a rubber-steel wire system. J Adhesion Sci Technol. 2005;19(16):1475–91.

    Article  CAS  Google Scholar 

  4. Sun Y-X, Gao G-Z. Bis(4-bromo-2-formylphenolato-k 2 O,O′)copper(II). Acta Cryst. 2005;E61(2):m354–5.

    CAS  Google Scholar 

  5. Chen Q. Bis(4-bromo-2-formylphenolato-k 2 O,O′)zinc(II). Acta Cryst. 2006;E62(1):m56–7.

    CAS  Google Scholar 

  6. Yang Y-M, Lu P-C, Zhu T-T, Liu C-H. Bis(2-formylphenolato-k 2 O,O′)iron(II). Acta Cryst. 2007;E63(6):m1613.

    CAS  Google Scholar 

  7. Pessoa JC, Cavaco I, Correira I, Tomaz I, Duarte T, Matias PM. Oxovanadium(IV) complexes with aromatic aldehydes. J Inorg Biochem. 2000;80(1):35–9.

    Article  CAS  Google Scholar 

  8. Lalia-Kantouri M, Papadopoulos CD, Hatzidimitriou AG, Skoulika S. Hetero-heptanuclear (Fe–Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8/Na5]·3OH·8H2O. Struct Chem. 2009;20(2):177–84.

    Article  CAS  Google Scholar 

  9. Lalia-Kantouri M, Dimitriadis T, Papadopoulos CD, Gdaniec M, Czapik A, Hatzidimitriou AG. Synthesis and structural characterization of iron(III) complexes with 2-hydroxyphenones. Z Anorg Allg Chem. 2009;635(13):2185–90.

    Article  CAS  Google Scholar 

  10. Bedell SA, Martell AE. Oxidation of 2,6-di-tert-butylphenol by molecular oxygen. Catalysis by tetrakis(bipyridyl)(μ-peroxo)(μ-hydroxo)dicobalt(III). Inorg Chem. 1983;22(2):364–7.

    Article  CAS  Google Scholar 

  11. Papadopoulos CD, Hatzidimitriou AG, Voutsas GP, Lalia-Kantouri M. Synthesis and characterization of new addition compounds of bis(substituted-salicylaldehydo) cobalt(II) with 2,2′-bipyridine (bipy). Crystal and molecular structures of [CoII(3-methoxy-salicylaldehyde)2(bipy)]·CH3OH (1) and [CoII(bipy)3]Br2·0.5(5-chloro-salicylaldehydeH). 1.5CH3OH (5). Polyhedron. 2007;26(5):1077–86.

    Article  CAS  Google Scholar 

  12. Papadopoulos CD, Lalia-Kantouri M, Jaud J, Hatzidimitriou AG. Substitution effect on new Co(II) addition compounds with salicylaldehydes and the nitrogenous bases phen or neoc: crystal and molecular structures of [CoII(5-NO2-salicylaldehyde)2(phen)], [CoII(5-CH3-salicylaldehyde)2(neoc)] and [CoII(5-Cl-salicylaldehyde)2(neoc)]. Inorg Chim Acta. 2007;360(11):3581–9.

    Article  CAS  Google Scholar 

  13. Papadopoulos CD, Hatzidimitriou AG, Quirós M, Sigalas MP, Lalia-Kantouri M. Synthesis, characterization, thermal and theoretical studies of cobalt(II) addition compounds with 2-hydroxy-phenones and α-diimines. Crystal and molecular structures of [Co(2-hydroxy- benzophenone)2(bipy)]·2-hydroxy-benzophenoneH (3) and [Co(2-hydroxy- benzophenone)2(phen)] (8). Polyhedron, 2011; 30(3):486–96. doi:10.1016/j.poly.2010.11.010.

  14. Curtis SA, Kurdziel K, Materazzi S, Vecchio S. Crystal structure and thermoanalytical study of a manganese(II) complex with 1-allylimidazole. J Therm Anal Calorim. 2008;92(1):109–14.

    Article  Google Scholar 

  15. Dziewulska-Kulaczkowska A, Mazur L, Ferenc W. Thermal, spectroscopic and structural studies of zinc(II) complex with Nicotinamide. J Therm Anal Calorim. 2009;96(1):255–60.

    Article  CAS  Google Scholar 

  16. Ye HM, Ren N, Li H, Zhang JJ, Sum SJ, Tian L. Synthesis, crystal structure and thermal decomposition kinetics of complex [Nd(BA)3bipy]2. J Therm Anal Calorim. 2010;101(1):205–11.

    Article  CAS  Google Scholar 

  17. Figgis BN, Nyholm RS. A convenient solid for calibration of Gouy magnetic susceptibility apparatus. J Chem Soc. 1958;4190:1.

    Google Scholar 

  18. Oxford Diffraction program name(s), CrysAlis CCD and CrysAlis RED Ver.1.171.31. Abingdon, Oxfordshire, England: Oxford Diffraction Ltd.; 2006.

  19. Sheldrick GM. SHELXS-97, program for solution of crystal structures, and SHELXL-97 program for crystal structures refinement. Göttingen: University of Göttingen; 1997.

    Google Scholar 

  20. Sheldrick GM. A short history of SHELX. Acta Cryst. 2008;A64:112–22.

    CAS  Google Scholar 

  21. O’Coonor JCh. Progress in inorganic chemistry. New York: Wiley; 1982. p. 204–83.

    Google Scholar 

  22. Martin RL. New pathways in inorganic chemistry. Cambridge: Cambridge University Press; 1968. p. 149–231.

    Google Scholar 

  23. Figgis NB, Lewis J. Progress in inorganic chemistry. New York: Interscience; 1964. p. 37.

    Book  Google Scholar 

  24. Burger K. Coordination chemistry: experimental methods. Budapest: Akademiai Kiado; 1973.

    Google Scholar 

  25. Earnshaw A. Introduction to magnetochemistry. London: Academic Press; 1968.

    Google Scholar 

  26. Cotton FA, Wilkinson G. Advanced inorganic chemistry. New York: Wiley; 1988. p. 730.

    Google Scholar 

  27. Patel KN, Patel NH, Patel KM, Patel MN. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) mixed-ligand complexes. Synth React Inorg Metal Org Chem. 2000;30(5):921–30.

    Article  CAS  Google Scholar 

  28. Ferenc W, Cristvao B, Sarzynski J. Thermal and magnetic behavior of 5-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II). J Therm Anal. 2010;101(2):761–7.

    Article  CAS  Google Scholar 

  29. Dziewulska-Kulaczkowska A. Manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes with 4-oxo-4H-1-benzopyran-3-carboxaldehyde: thermal, spectroscopic and magnetic characterization. J Therm Anal. 2010;101(3):1019–26.

    Article  CAS  Google Scholar 

  30. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polymer Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  31. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(x):1881–6.

    Article  CAS  Google Scholar 

  32. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  33. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6(x):183–95.

    Google Scholar 

  34. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lalia-Kantouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10973_2011_1692_MOESM1_ESM.jpg

Fig. 1s XRD pattern of the thermal decomposition material at 1300 °C in N2, for compounds (1) [Co(3-OCH3-salo)2(neoc)] and/or (2) [Co(5-CH3-salo)2(neoc)]. (JPEG 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalia-Kantouri, M., Gdaniec, M., Czapik, A. et al. Thermoanalytical, magnetic and structural study of Co(II) complexes with substituted salicylaldehydes and neocuproine. J Therm Anal Calorim 109, 131–139 (2012). https://doi.org/10.1007/s10973-011-1692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1692-5

Keywords

Navigation