Skip to main content
Log in

Microcalorimetric study of DNA–Cu(II)TOEPyP(4) porphyrin complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of new water soluble cationic metalloporphyrin Cu(II)TOEPyP(4) (meso-tetra-(4-N-oxyethylpyridyl)), analogue of Cu(II)TMPyP(4), on thermodynamic stability of DNA at various molar ratios of r = porphyrin/DNA b.p. (0 < r < 0.12) has been studied. It has been shown that Cu(II)TOEPyP(4) is a strong stabilizing agent for calf thymus DNA increasing its melting temperature from 75.5 to 99.5 °C, in the range 0 < r < 0.06. The melting enthalpy (∆H m) does not change in the range 0.002 < r < 0.06 and it equals to 11.6 ± 0.8 cal/g. At r > 0.07, ∆H m and T m decrease, and at r = 0.12 they equal to 6.4 ± 0.6 cal/g and 92.5 °C, accordingly. We suggest that such centers of binding are the well documented 5′CG3′ sites and G-quadruplex at r < 0.01, and negatively charged phosphate groups at r > 0.01. On the basis of ∆H m invariability with simultaneous increase of T m in the range 0.002 < r < 0.06, it is shown that the DNA-Cu(II)TOEPyP(4) complex melting is not of an enthalpic nature but of an entropic one. The two-phase helix–coil transition of DNA at r < 0.01 is considered as a result of porphyrin redistribution in the melting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gokakakar SD, Salker AV. Thermal studies of cobalt, iron and tin metalloporphyrins. J Therm Anal Calorim. 2010;101(3):809–13.

    Article  CAS  Google Scholar 

  2. Grand CL, Han H, Munoz RM, Weitman S, Von Hoff DD, Hurley LH, Bearss DJ. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther. 2002;1:565–73.

    CAS  Google Scholar 

  3. Shammas MA, Shmookler RJ, Akiyama M, Koley H, Chauhan D, Hideshima T, Goyal RK, Hurley LH, Anderson KC, Munshi NC. Telomerase inhibition and cell growth arrest following porphyrin treatment of multiple myeloma cells. Mol Cancer Ther. 2003;2(9):825–33.

    CAS  Google Scholar 

  4. Balaz M, Bitsch-Jensen K, Mammana A, Ellested GA, Nakanishi K, Berova A. Porphyrins as spectroscopic sensors for conformational studies of DNA. Pure Appl Chem. 2007;79(4):801–9.

    Article  CAS  Google Scholar 

  5. Latt KK, Takahashi Y. Fabrication and characterization of a α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphine/silica nanocomposite thin-layer membrane for detection of ppb-level heavy metal ions. Anal Chim Acta. 2011;689(1):103–9.

    Article  CAS  Google Scholar 

  6. Waller ZA, Sewitz SA, Hsu SD, Balasubramanian S. A small molecule that disrupts G-quadruplex DNA structure and enhances gene expression. J Am Chem Soc. 2009;131:12628–33.

    Article  CAS  Google Scholar 

  7. Gaynutdinov TI, Neumann RD, Panyutin IG. Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences. Nucl Acids Res. 2008;36:4079–87.

    Article  CAS  Google Scholar 

  8. Ghazaryan AA, Dalyan YB, Haroutiunian SG, Vardanyan VI, Ghazaryan RK, Chalikian TV. Thermodynamics of interactions of TAlPyP4 and AgTAlPyP4 porphyrins with poly(rA)poly(rU) and poly(rI)poly(rC) duplexes. J Biomol Struct Dyn. 2006;24:67–74.

    CAS  Google Scholar 

  9. Fiel RJ. Porphyrin-nucleic acid interactions: a review. J Biomol Struct Dyn. 1989;6:1259–74.

    CAS  Google Scholar 

  10. Bennett M, Krah A, Wien F, Garman E, Mckenna R, Sanderson M, Neidle S. A DNA-porphyrin minor-groove complex at atomic resolution: the structural consequences of porphyrin ruffling. Proc Natl Acad Sci USA. 2000;97:9476–81.

    Article  CAS  Google Scholar 

  11. Lee S, Lee Y-Ae, Lee HM, Lee JY, Kim DH, Kim SK. Rotation of periphery methylpyridine of meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2, 3, 4) and its selective binding to native and synthetic DNAs. Biophys J. 2002;83:371–81.

    Article  CAS  Google Scholar 

  12. Marzilli LG, Banville LD, Zon G, Wilson WD. Pronounced H-1 and P-31 NMR spectral changes on meso-tetrakis(N-methylpyridinium-4-yl)porphyrin binding to poly[d(G-C)]·poly[d(GC)] and to 3 tetradecaoligodeoxyribonucleotides: evidence for symmetric, selective binding to 5′CG3′ sequences. J Am Chem Soc. 1986;108:4188–92.

    Article  CAS  Google Scholar 

  13. Mojzes P, Kruglik SG, Baumruk V, Turpin P-Y. Interactions of electronically excited copper(II)–porphyrin with DNA: resonance raman evidence for the exciplex formation with adenine and cytosine residues. J Phys Chem. 2003;107:7532–5.

    Article  CAS  Google Scholar 

  14. Pasternack RF, Ewen S, Rao A, Meyer AS, Freedman MA, Collings PJ, Frey SL, Ranen MC, Paula JC. Interaction of copper(II) porphyrins with DNA. Inorg Chem Acta. 2001;317:59–71.

    Article  CAS  Google Scholar 

  15. Monaselidze J, Kiladze M, Tananashvili D, Barbakadze Sh, Naskidashvili A, Khizanishvili A, Kvavadze R, Majagaladze G. Free and bound water influence on Spirulina platensis survival. J Therm Anal Calorim. 2006;84(3):613–8.

    Article  CAS  Google Scholar 

  16. Monaselidze J, Majagaladze G, barbakadze Sh, Khachidze D, gorgoshidze M, Kalandaze Y, Haroutiunian S, Dalian Y, Vardanian V. Microcalorimetric investigation of DNA, poly(Da)poly(Dt) and poly[D(A-C)]Poly[D(G-T)] melting in the presence of water soluble (meso tetra (4N oxyethylpyridyl) porphyrin) and its Zn complex. J Biomol Struct Dyn. 2008;25:419–24.

    CAS  Google Scholar 

  17. McGhee JD. Theoretical calculations of the helix coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers. 1976;15(7):1345–75.

    Article  CAS  Google Scholar 

  18. Sari MA, Battioni JR, Dupre D, Mansuy D, Le Pecq JB. Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry. 1990;29:4205–15.

    Article  CAS  Google Scholar 

  19. Ohyama T, Mita H, Yamamoto Y. Study on the complexation between DNA and cationic porphyrin derivatives. Nucl Acids Symp Ser. 2004;48:137–8.

    Article  Google Scholar 

  20. Kubat P, Lang K, Anzenbacher P, Jursikova K, Kral V, Ehrenberg B. Interaction of novel cationic meso-tetraphenylporphyrins in the ground and excited states with DNA and nucleotides. J Chem Soc Perkin Trans. 2000;1:933–41.

    Article  Google Scholar 

  21. Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML. The anatomy of A-, B-, and Z-DNA. Science. 1982;216:475–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamlet R. Monaselidze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaselidze, J.R., Kiladze, M.T., Gorgoshidze, M.Z. et al. Microcalorimetric study of DNA–Cu(II)TOEPyP(4) porphyrin complex. J Therm Anal Calorim 108, 127–131 (2012). https://doi.org/10.1007/s10973-011-1669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1669-4

Keywords

Navigation