Skip to main content
Log in

Kinetic studies of bulk Se92Te8−x Sn x (x = 0, 1, 2, 3, 4 and 5) semiconducting glasses by DSC technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bulk samples of Se92Te8−x Sn x glassy alloys are obtained by melt quenching technique. Differential scanning calorimetry (DSC) technique (under non-isothermal conditions) has been applied to determine the thermal properties of Se-rich glassy alloys at different heating rates. Results of glass transition temperature, enthalpy released, fragility and specific heat of Se92Te8−x Sn x (x = 0, 1, 2, 3, 4 and 5) chalcogenide glasses have been reported and discussed. The glass transition temperature (T g), activation energy of glass transition and fragility are found to increase with increase in Sn content. The glass transition temperature (by Gibbs–Dimarzio equation) also has been calculated. Both values of T g (experimental as well as theoretical) are found to be in good agreement at a heating rate of 10 K min−1. It has been observed that the value of specific heat (C p) below glass transition and difference in the value of C p before and after glass transition (ΔC p) is highly compositional dependent. The enthalpy release is related to the metastability of the glasses, and the least stable glasses are supposed to have maximum ΔH c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wagner T, Frumar M, Suskova V. Photoenhanced dissolution and lateral diffusion of Ag in amorphous As–S layers. J Non-Cryst Solids. 1991;128:197–207.

    Article  CAS  Google Scholar 

  2. Ramesh K, Asokan S, Sangunni KS, Gopal ESR. Glass formation in germanium telluride glasses containing metallic additives. J Phys Chem Solids. 2000;61:95–101.

    Article  CAS  Google Scholar 

  3. Frumar M, Cernosek Z, Jedelsky J, Frumarova B, Wagner T. Photoinduced changes of structure and properties of amorphous binary and ternary chalcogenides. J Optoelectron Adv Mater. 2001;3:177–88.

    CAS  Google Scholar 

  4. Elliot SR. Physics of amorphous materials. 2nd ed. London: Longman; 1991.

    Google Scholar 

  5. Asobe M. Non-linear optical properties of chalcogenide glass fibres and their application to all-optical switching. Opt Fiber Technol. 1997;3:142–8.

    Article  Google Scholar 

  6. Fugimori S, Yagi S, Yamzaki H, Funakosky N. Crystallization process of Sb–Te alloy films for optical storage. J Appl Phys. 1988;64:1000–4.

    Article  Google Scholar 

  7. Katsuyama T, Satoh S, Atsumura HM. Scattering loss characteristics of selenide-based chalcogenide glass optical fibre. J Appl Phys. 1992;71:4132–6.

    Article  CAS  Google Scholar 

  8. Srivastva S, Mehta N, Singh CP, Shukla RK, Kumar A. Dielectric parameters in Se70Te30 and Se70Te28Zn2 chalcogenide glasses. Physica B. 2008;403:2910–6.

    Article  Google Scholar 

  9. Kozicky MN, Mitkova M. Mass transport in chalcogenide electrolyte films—materials and applications. J Non-Cryst Solids. 2006;352:567–77.

    Article  Google Scholar 

  10. Vashneya AK, Mauro DJ. Microhardness, indentation toughness, elasticity, plasticity, and brittleness of Ge–Sb–Se chalcogenide glasses. J Non-Cryst Solids. 2007;353:1291–7.

    Article  Google Scholar 

  11. Singh AK, Mehta N, Singh K. Electrical properties of Se–Zn–In chalcogenide glasses. Eur J Appl Phys. 2009. doi:10.1051/epjap/2009047.

  12. Chander R, Thangaraj R. Thermal and optical analysis of Te-substituted Sn–Sb–Se chalcogenide semiconductors. Appl Phys A. 2010;99:181–7.

    Article  CAS  Google Scholar 

  13. Kaur G, Thangaraj R, Komatsu T. Crystallization kinetics of bulk amorphous Se–Te–Sn system. J Mater Sci. 2001;36:4530–3.

    Article  Google Scholar 

  14. Saraswat S, Kushwaha SSS. Specific heat studies in a-Se and a-Se90M10 (M = In, Sb, Te) alloys. J Therm Anal Calorim. 2009;96:923–7.

    Article  CAS  Google Scholar 

  15. Kasap SO, Wagner T, Maeda K. Heat capacity and the structure of chalcogenide glasses by modulated temperature differential scanning calorimetry (MDSC). Jpn J Appl Phys. 1996;35:1116–9.

    Article  Google Scholar 

  16. Avagadro A, Aldrovandi S, Carini G, Siri A. Specific heat and thermal conductivity of ionic conductors and chalcogenide glasses at low temperature. Philos Mag. 1989;59:33–42.

    Article  Google Scholar 

  17. Pradeep P, Saxena NS, Kumar A. Heat capacities and relaxation effects of Se–Te–Cd glasses. J Phys Chem Solids. 1997;58:385–9.

    Article  Google Scholar 

  18. Sreeram AN, Swiler DR, Varshneya AK. Gibbs–DiMarzio equation to describe the glass transition temperature trends in multicomponent glasses. J Non-Cryst Solids. 1991;127:287–94.

    Article  CAS  Google Scholar 

  19. Micoulaut M, Naumis GG. Glass transition temperature variation, cross-linking and structure in network glasses: a stochastic approach. Europhys Lett. 1999;47:568–74.

    Article  CAS  Google Scholar 

  20. Imran MMA, Bhandari D, Saxena NS. Kinetic study of bulk Ge22Se78−x Bi x (0, 4 and 8) semiconducting glasses. J Therm Anal Calorim. 2001;65:257–74.

    Article  CAS  Google Scholar 

  21. Deepika, Rathore KS, Saxena NS. A kinetic analysis of non-isothermal glass-crystal transformation in Ge1−x Sn x Se2.5 (0 ≤ x ≤ 0.5) glasses. J Phys Condens Matter. 2009. doi:10.1088/0953-8984/21/33/335102.

  22. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  23. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  24. Tiwari RS, Mehta N, Shukla RK, Aggarwal P, Kumar A. Specific heat studies in glassy Se78Ge22 and Se68Ge22M10 (M = Cd, In, Pb) alloy. Indian J Pure Appl Phys. 2005;43:363–7.

    CAS  Google Scholar 

  25. Ngai KL, Rendell RW, Pye LD, LaCourse WC, Stevens HJ. The physics of non-crystalline solids. London: Taylor and Francis; 1992. p. 309–42.

    Google Scholar 

  26. Vilgis TA. Strong and fragile glasses: a powerful classification and its consequences. Phys Rev B. 1993;47:2882–5.

    Article  CAS  Google Scholar 

  27. Bohmer R, Angell CA, Richert R, Blumen A, editors. Disorder effects on relaxational processes. Berlin: Springer; 1994.

    Google Scholar 

  28. Saiter JM. Physical ageing in chalcogenide glasses. J Opto-Electron Adv Mater. 2001;3:685–94.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Sharma, P. & Rangra, V.S. Kinetic studies of bulk Se92Te8−x Sn x (x = 0, 1, 2, 3, 4 and 5) semiconducting glasses by DSC technique. J Therm Anal Calorim 109, 177–181 (2012). https://doi.org/10.1007/s10973-011-1661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1661-z

Keywords

Navigation