Skip to main content
Log in

Preparation of nano poly(phenylsilsesquioxane) spheres and the influence of nano-PPSQ on the thermal stability of poly(methyl methacrylate)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The nano poly(phenylsilsesquioxane) spheres (nano-PPSQ) were prepared by the sol–gel method and incorporated into poly(methyl methacrylate) (PMMA) by in situ bulk polymerization of methyl methacrylate. The structure of nano-PPSQ was confirmed by transmission electron microscope and thermogravimetry analysis (TG). The interaction between nano-PPSQ and PMMA was investigated by Fourier transform infrared spectra (FT-IR). The influence of nano-PPSQ on the thermal stability of PMMA was investigated by TG and differential scanning calorimetry (DSC) measurements. The results indicated that nano-PPSQ enhanced the thermal stability and the temperatures of glass transition (T g) of nanocomposites. The effect of the heating rate in dynamic measurements (5–30 °C min−1) on kinetic parameters such as activation energy by TG both in nitrogen and air was investigated. The Kissinger method was used to determine the apparent activation energy for the degradation of pure PMMA and nanocomposites. The kinetic results showed that the apparent activation energy for degradation of nanocomposites was higher than that of pure PMMA under air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Marinovic-Cincovic M, Popovic MC, Novakovic MM, Nedeljkovic JM. The influence of β-FeOOH nanorods on the thermal stability of poly (methyl methacrylate). Polym Degrad Stab. 2007;92:70–4.

    Article  CAS  Google Scholar 

  2. Laachachia A, Cocheza M, Ferriola M, Lopez-Cuestab JM, Leroy E. Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA). Mater Lett. 2005;59:36–9.

    Article  Google Scholar 

  3. Kuan HC, Chiu SL, Chen CH, Kuanl CF, Chiang CL. Synthesis, characterization, and thermal stability of PMMA/SiO2/TiO2 tertiary nanocomposites via non-hydrolytic sol–gel method. J Appl Polym Sci. 2009;113:1959–65.

    Article  CAS  Google Scholar 

  4. Kandare E, Deng HM, Wang DY, Hossenlopp JM. Thermal stability and degradation kinetics of poly(methyl methacrylate)/layered copper hydroxymethacrylate composites. Polym Adv Technol. 2006;17:312–9.

    Article  CAS  Google Scholar 

  5. Chatterjee A. Effect of nanoTiO2 addition on poly(methyl methacrylate): an exciting nanocomposites. J Appl Polym Sci. 2010;116:3396–407.

    CAS  Google Scholar 

  6. Lerari D, Peeterbroeck S, Benali S, Benaboura A, Dubois P. Use of a new natural clay to produce poly(methylmethacrylate)-based nanocomposites. Polym Int. 2010;59:71–7.

    Article  CAS  Google Scholar 

  7. Sankaraiah S, Lee JM, Kim JH. Preparation and characterization of surface-functionalized polysilsesquioxane hard spheres in aqueous medium. Macromolecules. 2008;41:6195–204.

    Article  CAS  Google Scholar 

  8. Kim YB, Kim YA, Yoon KS. Preparation of functionalized polysilsesquioxane and polysilsesquioxane-metal nanoparticle composite spheres. Macromol Rapid Commun. 2006;27:1247–53.

    Article  CAS  Google Scholar 

  9. Takahashi K, Tadanaga K, Matsuda A, Hayashi A, Tatsumisago M. Thermoplastic and thermosetting properties of polyphenylsilsesquioxane spheres prepared by two-step acid-base catalyzed sol-gel process. J Sol-Gel Sci Technol. 2007;41:217–22.

    Article  CAS  Google Scholar 

  10. Arkhireeva A, Hay JN. Synthesis of sub-200 nm silsesquioxane particles using a modified Stöber sol–gel route. J Mater Chem. 2003;13:3122–7.

    Article  CAS  Google Scholar 

  11. Arkhireev A, Hay JN, Oware W. A versatile route to silsesquioxane nanospheres organically modified silane precursors. J Sol-Gel Sci Technol. 2005;51:1688–95.

    Google Scholar 

  12. Takeshi O, Yoshiki C. Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals. Polym J. 2010;42:58–65.

    Article  Google Scholar 

  13. Janos M, Bela P. Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem. 2008;14:535–63.

    Article  Google Scholar 

  14. Dimitris SA, Alexandros KN, George PK. PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2010;102:451–60.

    Article  Google Scholar 

  15. Feng Y, Jia Y, Xu HY. Preparation and thermal properties of hybrid nanocomposites of poly(methyl methacrylate)/octavinyl polyhedral oligomeric silsesquioxane blends. J Appl Polym Sci. 2009;111:2684–90.

    Article  CAS  Google Scholar 

  16. Wantinee V, Richard LL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103:267–73.

    Article  Google Scholar 

  17. Zou DQ, Yoshida H. Size effect of silica nanoparticles on thermal decomposition of PMMA. J Therm Anal Calorim. 2010;99:21–6.

    Article  CAS  Google Scholar 

  18. Manring LE, Sogah DY, Cohen GM. Thermal degradation of poly(methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules. 1989;22(12):4652–4.

    Article  CAS  Google Scholar 

  19. Hirata T, Kashiwagi T, Brown JE. Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules. 1985;18(7):1410–8.

    Article  CAS  Google Scholar 

  20. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  21. Arisawa H, Brill TB. Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust Flame. 1997;109(3):415–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Nanjing University of Science & Technology Research Funding (No. 2010GJPY045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wu, L. & Li, J. Preparation of nano poly(phenylsilsesquioxane) spheres and the influence of nano-PPSQ on the thermal stability of poly(methyl methacrylate). J Therm Anal Calorim 109, 323–329 (2012). https://doi.org/10.1007/s10973-011-1619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1619-1

Keywords

Navigation