Skip to main content
Log in

AMP.PNP affects the dynamical properties of monomer and polymerized actin

A DSC and an EPR study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Actin is the component of several biological systems and it plays important role in different biological processes, especially in cell motility. The actin-based motility is accompanied with ATP-consume, and the irreversible ATP hydrolysis is coupled with the polymerization of monomer actin into filamentous form. When an actin monomer is incorporated into a filament, the ATPase is activated, and thereby the polymer formation is promoted. The polymer formation and the ATP hydrolysis is associated with internal motions and significant changes of the conformation in reaction partners. In this article, the ATP nucleotide in monomer actin was exchanged by its non-hydrolyzable analogue adenylyl-imidodiphosphate (AMP.PNP), and using two biophysical methods, electron paramagnetic resonance spectroscopy (EPR) and differential scanning calorimetry (DSC), we studied the local and global changes in globular and fibrous actin following the nucleotide exchange. The paramagnetic probe molecule—a maleimide spin label—was attached to Cys-374 site of monomer actin, and its rotational mobility was derived at different temperature. In DSC measurements the transition temperatures of samples with different bound nucleotides were compared. From the measurements we could conclude, that the nucleotide exchange induces changes in the internal rigidity of the actin systems, AMP.PNP-actins showed longer rotational correlation time and increased thermal transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Egelman EH, Orlova A. New insights into actin filament dynamics. Curr Opin Struct Biol. 1995;5:172–80.

    Article  CAS  Google Scholar 

  2. Orlova A, Egelman EH. A conformational change in the actin the subunit can change the flexibility of the actin filament. J Mol Biol. 1993;232:334–41.

    Article  CAS  Google Scholar 

  3. Orlova A, Egelman EH. Structural dynamics of F-actin. I. Changes in the C-terminus. J Mol Biol. 1995;245:582–97.

    Article  CAS  Google Scholar 

  4. Kim E, Bobkova E, Miller CJ, Orlova A, Hegyi G, Egelman EH, Muhlrad A, Reisler E. Intrastrand cross-linked actin between Gln41 and Cys374. III. Inhibition of motion and force generation with myosin. Biochemistry. 1998;37:17801–9.

    Article  CAS  Google Scholar 

  5. Könczöl F, Lőrinczy D, Vértes Zs, Hegyi G, Belágyi J. Inter-monomer cross-linking affects the thermal transitions in F-actin. J Therm Anal Calorim. 2010;101:549–53.

    Article  Google Scholar 

  6. Otterbein LR, Graceffa P, Domingez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001;293:708–11.

    Article  CAS  Google Scholar 

  7. Graceffa P, Domingez R. Crystal structure of monomeric actin in the ATP state. J Biol Chem. 2003;278:34172–80.

    Article  CAS  Google Scholar 

  8. Gaszner B, Nyitrai M, Hartvig N, Köszegi T, Somogyi B, Belagyi J. Replacement of ATP with ADP affects the dynamic and conformational properties of actin monomer. Biochemistry. 1999;38:12885–92.

    Article  CAS  Google Scholar 

  9. Strzelecka-Golaszewska H, Moraczewska J, Khaitlina SY, Mossakowska M. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur J Biochem. 1993;311:731–42.

    Article  Google Scholar 

  10. Levitsky D, Pivovarova AV, Mikhailova VV, Nikolaeva OP. Thermal unfolding and aggregation of actin. Stabilization and destabilization of actin filaments. FEBS J. 2008;275:4280–95.

    Article  CAS  Google Scholar 

  11. Nikolaeva OP, Dedova IV, Khvorova IS, Levitsky DI. Interaction of F-actin with phosphate analogues studied by differential scanning calorimetry. FEBS Lett. 1994;351:15–8.

    Article  CAS  Google Scholar 

  12. Thomas DD, Seidel JC, Gergely J. Rotational dynamics of spin-labeled F-actin in the sub-millisecond time range. J Mol Biol. 1979;132:257–73.

    Article  CAS  Google Scholar 

  13. Yoshimura HT, Nishio K, Mihashi K, Kinosita Jr, Ikegami K. Torsional motion of eosin-labeled F-actin as detected in the time-resolved anisotropy decay of the probe in the sub-millisecond time range. J Mol Biol. 1984;179:453–67.

    Article  CAS  Google Scholar 

  14. Prochniewicz E, Zhang Q, Howard EC, Thomas DD. Microsecond rotational dynamics of actin: spectroscopic detection and theoretical simulation. J Mol Biol. 1996;255:446–57.

    Article  CAS  Google Scholar 

  15. Lumry R, Eyring J. Conformation changes in proteins. J Phys Chem. 1954;58:110–34.

    Article  CAS  Google Scholar 

  16. De La Cruz EM, Pollard TD. Nucleotide-free actin: stabilization by sucrose and nucleotide binding kinetics. Biochemistry. 1995;34:5452–61.

    Article  Google Scholar 

  17. Kupi T, Gróf P, Nyitrai M, Belagyi J. The uncoupling of the effects of formins on the local and global dynamics of actin filaments. Biophys J. 2009;96:474–88.

    Article  Google Scholar 

  18. Sanchez-Ruiz JM. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J. 1992;61:921–35.

    Article  CAS  Google Scholar 

  19. Conjero-Lara F, Mateo PL, Aviles FX, Sanchez-Ruiz JM. Effect of Zn++ on the thermal denaturation of carboxypeptiase B. Biochemistry. 1991;30:2067–72.

    Article  Google Scholar 

  20. De La Cruz EM, Mandinova A, Steinmetz MO, Stoffler D, Aebi U, Pollard TD. Polymerization and structure of nucleotide-free actin filaments. J Mol Biol. 2000;295:516–7.

    Google Scholar 

  21. Bertazzon A, Tian GH, Lamblin A, Tsong TY. Enthalpic and enthropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Biochemistry. 1990;29:291–8.

    Article  CAS  Google Scholar 

  22. Lőrinczy D, Vértes Zs, Könczöl F, Belagyi J. Thermal transitions of actin. J Therm Anal Calorim. 2009;100:713–79.

    Article  Google Scholar 

  23. Oda T, Iwasa M, Aihara T, Maeda Y, Narita A. The nature of the globular-to fibrous-actin transition. Nature. 2009;457:441–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lőrinczy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Türmer, K., Könczöl, F., Lőrinczy, D. et al. AMP.PNP affects the dynamical properties of monomer and polymerized actin. J Therm Anal Calorim 108, 95–100 (2012). https://doi.org/10.1007/s10973-011-1569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1569-7

Keywords

Navigation