Skip to main content
Log in

Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Metallic glasses have received considerable attention in comparison to normal metallic materials due to their superior physical and mechanical properties. These systems possess large under cooled region, ∆T (∆T = T x − T g where, T x is crystallization temperature and T g is glass transition temperature) and hence increased thermal stability against crystallization. Due to this, the study of their crystallization kinetics is important and interesting. It is interesting because of the fact that, crystallization becomes multi-step process due to several components present in these systems. In this paper, we report the experimental investigations of crystallization of Zr52Cu18Ni14Al10Ti6 glassy alloy system, which is among the best non-beryllium containing glasses, using differential scanning calorimetry (DSC). The crystallization, as expected, consists of multiple steps. Interestingly, the peak heights of these steps vary with heating rate. At lower heating rates, first peak is most prominent and subsequently diminishes with increase in heating rate with last peak prominence visible at highest heating rate. Both, iso-kinetic and iso-conversional methods of analysis of kinetics of crystallization have been used to evaluate the activation energy and Avrami exponents and consistent results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Glade SC, Busch R, Lee DS, Johnson WL, Wunderlich RK, Fecht HJ. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J Appl Phys. 2000;87:7242–8.

    Article  CAS  Google Scholar 

  2. Ligero RA, Vazquez J, Villares P, Jimenez-Garay R. Crystalllization kinetics in the As–Se–Te system. Thermochim Acta. 1990;162:427–34.

    Article  CAS  Google Scholar 

  3. Moharram AH, El-Oyoun MA, Abu-Sehly AA. Calorimetric study of the chalcogenide Se72.5Te20Sb7.5 glass. J Phys D Appl Phys. 2001;34:2541–6.

    Article  CAS  Google Scholar 

  4. Rysava N, Spasov T, Tichy L. Isothermal DSC methods for evaluation of the kinetics of crystallization in the Ge–Sb–S glassy system. J Therm Anal. 1987;32:1015–21.

    Article  CAS  Google Scholar 

  5. Giridhar A, Mahadevan S. Studies on the As–Sb–Se glass system. J Non Cryst Solids. 1982;51:305–15.

    Article  CAS  Google Scholar 

  6. Afify S. Differential scanning calorimetric study of chalcogenide glass Se0.7Te0.3. J Non Cryst Solids. 1991;128:279–84.

    Article  CAS  Google Scholar 

  7. Lad KN, Savalia RT, Pratap A, Dey GK, Banerjee S. Isokinetic and isoconversional study of crystallization kinetics of a Zr-based metallic glass. Thermochim Acta. 2008;473:74–80.

    Article  CAS  Google Scholar 

  8. Kolmogorov AN. On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Phys Ser. 1937;3:555.

    Google Scholar 

  9. Johnson WA, Mehl PA. Reaction kinetics of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–32.

    Google Scholar 

  10. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  11. Avrami M. Kinetics of phase change. II Transformations-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  12. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  13. Starink MJ. On the meaning of the impingement parameter in kinetic equations for nucleation and growth reactions. J Mater Sci. 2001;36:4433–41.

    Article  CAS  Google Scholar 

  14. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  15. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  16. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  17. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  18. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  19. Boswell PG. On the calculation of activation energies using modified Kissinger method. J Therm Anal. 1980;18:353–8.

    Article  CAS  Google Scholar 

  20. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  21. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem. 1966;70A:487–523.

    Google Scholar 

  22. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  23. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:642–93.

    Google Scholar 

  24. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  25. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci. 1964;C6:183–95.

    Google Scholar 

  26. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non Cryst Solids. 1986;81:129–34.

    Article  CAS  Google Scholar 

  27. Matusita K, Sakka S. Kinetic study of crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:81–4.

    CAS  Google Scholar 

  28. Matusita K, Sakka S. Kinetic study on crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non Cryst Solids. 1980;38–39:741–6.

    Article  Google Scholar 

  29. Dhurandhar H, Patel AT, Shanker Rao TL, Lad KN, Pratap A. Kinetics of crystalllization of co-based multi-component amorphous alloy. J ASTM Int. 2010;7:1–15.

    Google Scholar 

  30. Sunol JJ, Bonastre J. Crystallization kinetics of metallic glasses. J Therm Anal Calorim. 2010;102:447–50.

    Article  CAS  Google Scholar 

  31. Munteanu G, Segal E. Sestak–Berggren function in temperature-programmed reduction. J Therm Anal Calorim. 2010;101:89–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Pratap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A.T., Pratap, A. Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim 107, 159–165 (2012). https://doi.org/10.1007/s10973-011-1549-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1549-y

Keywords

Navigation