Skip to main content

Thermal behavior and signature patterns of human cytokine and soluble cytokine receptors investigated using dielectric thermal analysis and thermogravimetry

Abstract

Cytokines are small regulatory proteins secreted mostly by cells of the immune system. Cytokines participate in anti-inflammatory and pro-inflammatory processes in the body and in responses to host exposure to pathogens. In this study, the thermal behavior of human recombinant cytokines and soluble cytokine receptors; IFNγ, TNFα, IL-1 receptor antagonist, soluble TNF-receptor types 1 and 2, and sIL-2 receptor α were analyzed by dielectric thermal analysis at 37 °C and by thermogravimetry. Measurements were performed at a frequency range of 0.1–300,000 Hz. Permittivity and loss factor measurements were used to calculate mobility of charges (tan δ values) in the proteins from Debye plots. Peak frequencies and polarization times were used to determine dielectric signatures for each cytokine and receptor. Peak frequencies and polarization times were obtained for each cytokine and receptor analyzed. Detection of unique dielectric signatures of the proteins will aid development of sensitive dielectric sensors capable of detecting cytokines and soluble cytokine receptors in various human samples for malaria diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Clark IA, Budd AC, Alleva LM, Cowden WB. Human malaria disease: a consequence of inflammatory cytokine release. Malaria J. 2006;5:85.

    Article  Google Scholar 

  2. Snow PW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.

    Article  CAS  Google Scholar 

  3. Akanmori BD, Kurtzhalas JAL, Goka BQ, Adabayeri V, Ofori MF, Nkrumah FK, Behr C, Hviid L. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria. Eur Cytokine Netw. 2000;11:113–8.

    CAS  Google Scholar 

  4. Armah HB, Wilson NO, Sarfo BY, Powell MD, Bond VC, Anderson W, Adjei AA, Gyasi RK, Tettey Y, Wiredu EK, Tongren JE, Udhayakumar V, Stiles JK. Cerebrospinal fluid, serum biomarkers of cerebral malaria mortality in Ghanaian children. Malaria J. 2007;6:147.

    Article  Google Scholar 

  5. Awandare GA, Goka B, Boeuf P, Tetteh JKA, Kurtzhals JAL, Behr C, Akanmori BD. Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. JID. 2006;194:1438–46.

    Article  CAS  Google Scholar 

  6. Lovegrove FE, Tangpukdee N, Opoka RO, Lafferty EI, Rajwans N, Hawkes M, Krudsood S, Looareesuwan S, John CC, Liles WC, Kain KC. Serum Angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS ONE. 2009;4(3):4912. doi:10.1371/journal.pone.0004912.

    Article  Google Scholar 

  7. Iqbal J, Siddique A, Jameel M, Hira PR. Persistent histidine rich protein 2, parasite lactate dehydrogenase and pan malarial antigen reactivity after clearance of Plasmodium falciparum monoinfection. J Clin Microbiol. 2004;42:4237–41.

    Article  CAS  Google Scholar 

  8. Baker J, Ho M, Pelecanos A, et al. Global sequence variation in the histidine-rich proteins 2, 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malaria J. 2010;9:129.

    Article  Google Scholar 

  9. Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, Incardonas S, Perkins M, Bell D, McCarthy J, Cheng Q. A large proportion of P. falciparum isolates in the Amazon region of Peru lack Pfhrp2 and pfhrp3: implications for malaria diagnostic tests. PLoS One. 2010;5:e8091.

    Article  Google Scholar 

  10. Riga AT, Cahoon JM, Pialer JW. In: Riga AT, Judovits L, editors. Materials characterization by dynamic and modulated thermal analytical techniques, ASTM STP. PA: American Society for Testing and Materials West Conshohocken; 2001. p. 1402.

  11. Bonincontro A, Cinelli S, Onori G, Stravato A. Dielectric behavior of lysozyme and ferricytochrome-c in water/ethylene–glycol solutions. Biophys J. 2004;86:1118–23.

    Article  CAS  Google Scholar 

  12. Jastrzebska M, Kocot A, Vij JK, Zalewska-Rejdak J, Witecki T. Dielectric studies on charge hopping in melanin polymer. J Mol Struct. 2002;606:205–210.

    Google Scholar 

  13. Rizvi Tz, Khan MA. Temperature-dependent dielectric properties of slightly hydrated horn keratin. Int J Biol Macromol. 2008;42:292–7.

    Article  CAS  Google Scholar 

  14. Bone S, Gascoyne PRC, Pethig R. Dielectric properties of hydrated proteins at 9.9 GHz. J Chem Soc Faraday Trans 1. 1977;73:1605–11.

    Article  CAS  Google Scholar 

  15. Matthews ME, Riga AT. Effects of thermal history on solid state and melting behavior of amino acids. J Therm Anal Calorim. 2009;96:673–6.

    Article  CAS  Google Scholar 

  16. Matthews ME, Atkinson I, Presswalla L, Najjar O, Gerhardstein N, Wei R, Rye E, Riga AT. Dielectric classification of D- and L-amino acids by thermal and analytical methods. J Therm Anal Calorim. 2008;93:281–7.

    Article  CAS  Google Scholar 

  17. Earnest CM. In: Earnest CM, editor. Compositional analysis by thermogravimetry. Philadelphia, PA: ASTM STP; 1988. p. 997.

  18. Presswala L, Matthews ME, Atkinson I, Najjar O, Gerhardstein N, Moran J, Wei R, Riga AT. Discovery of bound and unbound waters in crystalline amino acids revealed by thermal analysis. J Therm Anal Calorim. 2008;93:295–300.

    Article  CAS  Google Scholar 

  19. Riga AT. The electrochemical and dissolution properties of nickel oxide and lithiated NiO. PhD Thesis, Western Reserve University; 1967. p. 32–9.

  20. Ziman JM. Electrons and phonons, theory of transport phenomena in solids. Oxford, England: Clarendron; 1963. p. 308–10.

    Google Scholar 

  21. Suherman PM, Taylor P, Smith G. Low frequency dielectric study on hydrated ovalbumin. J Non Cryst Solids. 2002;305:317–21.

    Article  CAS  Google Scholar 

  22. Ruderman G, De Xammar Oro JR. On the dielectric spectra of proteins in conducting media. J Biol Phys. 1992;18:167–74.

    Article  Google Scholar 

  23. Hesselink DA, Burgerhart J, Bosmans-Timmerarends H, Petit P, van Genderen PJJ. Procalcitonin as a biomarker for severe Plasmodium falciparum disease: a critical appraisal of a semi-quantitative point-of-care test in a cohort of travelers with imported malaria. Malaria J. 2009;8:206. doi:10.1186/1475-2875-8-206.

    Article  Google Scholar 

  24. Hanash S. Disease proteomics. Nature. 2003;422:226–32.

    Article  CAS  Google Scholar 

  25. Reimer T, Shaw MH, Franchi L, Coban C, Ishii KJ, Akira S, Horri T, Rodriguez A, Nunez G. Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur J Immunol. 2010;40:764–9.

    Article  CAS  Google Scholar 

  26. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by Cleveland State University’s 2010 Undergraduate Summer Research Program. We thank Ellen Matthews and Naullage I. Perera for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobili Sam-Yellowe or Alan T. Riga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 543 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saleh, S.W., Moreno-Molek, S.E., Mantheni, D.R. et al. Thermal behavior and signature patterns of human cytokine and soluble cytokine receptors investigated using dielectric thermal analysis and thermogravimetry. J Therm Anal Calorim 108, 41–51 (2012). https://doi.org/10.1007/s10973-011-1530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1530-9

Keywords