Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose


In this study, microcrystalline cellulose (MCC) was prepared from the acid hydrolysis of bacterial cellulose (BC) produced in culture medium of static Acetobacter xylinum. The MCC-BC produced an average particle size between 70 and 90 μm and a degree of polymerization (DP) of 250. The characterization of samples was performed by thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy (SEM). The MCC shows a lower thermal stability than the pristine cellulose, which was expected due to the decrease in the DP during the hydrolysis process. In addition, from X-ray diffractograms, we observed a change in the crystalline structure. The images of SEM for the BC and MCC show clear differences with modifications of BC fiber structure and production of particles with characteristics similar to commercial MCC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358.

    Article  CAS  Google Scholar 

  2. 2.

    Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert GHYS, Marques J, Rodrigo FC, Messaddeq Y, Ribeiro SJL. Thermal characterization of bacterial cellulose—phosphate membranes. J Therm Anal Calorim. 2007;87:815–8.

    Article  CAS  Google Scholar 

  3. 3.

    Sjöström E. Wood chemistry—fundamental and applications. San Diego: Academic Press; 1981. p. 52–5.

    Google Scholar 

  4. 4.

    Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci. 2000;35(2):261–70.

    Article  CAS  Google Scholar 

  5. 5.

    Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59:101.

    Article  CAS  Google Scholar 

  6. 6.

    Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H. Bacterial cellulose. In: Steinbuchel A, editor. Biotechnology of biopolymers, from synthesis to patents, vol. 14. Heidelberg: Wiley; 2005. p. 381.

    Google Scholar 

  7. 7.

    El-Sakhawy M, Hassan ML. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym. 2007;67:1–10.

    Article  CAS  Google Scholar 

  8. 8.

    NBR 7730.Pulp—determination of viscosity in cupriethylenediamine solution (CUEN) using capillary viscometer. 1998.

  9. 9.

    Bolhuis GH, Chawhan ZT. Materials for direct compaction. In: Alderbon G, Nyström C, editors. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996. p. 419–501.

    Google Scholar 

  10. 10.

    Paralikar KM, Aravindanath S. Crystallization of cellulose. J Appl Polym Sci. 1988;35(8):2085–9.

    Article  CAS  Google Scholar 

  11. 11.

    Muñoz-Ruiz A, Antequera VV, Parales CM, Ballesteros RJC. Tabletting properties of new granular microcrystalline celluloses. Eur J Pharm Biopharm. 1994;40(1):36–40.

    Google Scholar 

  12. 12.

    Filho ECS, Santana SAA, Melo JCP, Oliveira FJVE, Airoldi C. X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Therm Anal Calorim. 2009;100:315–21.

    Article  Google Scholar 

  13. 13.

    Nelson ML, O’Connor RT. Relation of certain Infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci. 1964;8:1325–41.

    Article  CAS  Google Scholar 

  14. 14.

    Ott E. High polymers e cellulose and cellulose derivatives. New York: Interscience Publishers Inc.; 1943.

    Google Scholar 

  15. 15.

    Nitin A, Tayade T. Evaluation of microcrystalline cellulose prepared from sisal fibers as a table excipient: a technical note. AAPS PharmSciTech. 2007; 8(1): Article 8.

  16. 16.

    Barud HS, Ribeiro CA, Capela JMV, Crespi MS, Ribeiro SJL, Messadeq Y. Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J Therm Anal Calorim. 2010. ESTAC2010 Special Issue: 1–6.

  17. 17.

    Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485–91.

    Article  CAS  Google Scholar 

  18. 18.

    Zohuriaan MJ, Shokrolahi F. Thermal studies on natural and modified gums. Polym Testing. 2004;23:575–9.

    Article  CAS  Google Scholar 

  19. 19.

    Uesu NY, Pineda AG, Hechenleitner AAW. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm. 2000;206:85–96.

    Article  CAS  Google Scholar 

  20. 20.

    Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004;5:1671–7.

    Article  CAS  Google Scholar 

  21. 21.

    Rodrigues Filho G, Assunção RMN, Vieira JG, Meireles CS, Cerqueira DA, Barud HS, Ribeiro SJL, Messaddeq Y. Characterization of methylcellulose produced form sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92:205–10.

    Article  CAS  Google Scholar 

  22. 22.

    Dong XM, Revol Jf, Gray DG. Effect of Microcrystalline preparation condition on the formation of colloid crystal of cellulose. Cellulose. 1998;5:19–32.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rafael Leite de Oliveira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Oliveira, R.L., da Silva Barud, H., de Assunção, R.M.N. et al. Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. J Therm Anal Calorim 106, 703–709 (2011).

Download citation


  • Bacterial cellulose
  • Microcrystalline cellulose
  • Acetobacter xylinum
  • Acid hydrolysis