Journal of Thermal Analysis and Calorimetry

, Volume 106, Issue 2, pp 557–561 | Cite as

Influence of thermal degradation in the physicochemical properties of fish oil

  • K. L. G. V. Araújo
  • P. S. Epaminondas
  • M. C. D. Silva
  • A. E. A. de Lima
  • R. Rosenhaim
  • A. S. Maia
  • L. E. B. Soledade
  • A. L. Souza
  • I. M. G. Santos
  • A. G. Souza
  • N. Queiroz
Article

Abstract

Physicochemical and thermal analyses were undertaken to evaluate the influence of the temperature on the oxidation of sea fish oil once its polyunsaturated fatty acids deteriorate rapidly. Fish oil displayed four decomposition steps in synthetic air atmosphere and only one step in nitrogen atmosphere. The first step started at 189 and 222 °C for oxidizing and inert atmospheres, respectively. An OIT value of 53 min was measured at 100 °C. After the degradation process the peroxide index and the iodine index reduced from 35.38 to 9.85 meq × 1000 g−1 and from 139.79 to 120.19 gI2 × 100 g−1, respectively. An increase of the free fatty acids amount from 0.07 to 0.17% was observed while viscosity increased from 57.2 to 58.0 cP. Absorption at 272 nm also increased. The thermogravimetric and spectroscopic techniques are reproducible and versatile being an option for characterization of edible oil oxidation.

Keywords

Sea fish oil Omega3-thermal oxidation Thermal analysis 

References

  1. 1.
    Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189:19–30.CrossRefGoogle Scholar
  2. 2.
    Curtis JM, Natalie B, Prudence D. The determination of n-3 fatty acid levels in food products containing microencapsulated fish oil using the one step extraction method. J Am Oil Chem Soc. 2008;85:297–305.CrossRefGoogle Scholar
  3. 3.
    Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68:280–9.CrossRefGoogle Scholar
  4. 4.
    Siddiqui N, Sim J, Silwood TH, Iles RA, Grootveld M. Multicomponent analysis of uncapsulated marine oil supplements using high-resolution 1H and 13C NMR techniques. J Lipid Res. 2003;44:2406–27.CrossRefGoogle Scholar
  5. 5.
    Schubring R. Crystallisation and melting behaviour of fish oil measured by DSC. J Therm Anal Calorim. 2009;95:823–30.CrossRefGoogle Scholar
  6. 6.
    Siriwardhana N, Lee KW, Kim SH, Ha JH, Park GT, Jeon YJ. Lipid peroxidation inhibitory effects of Hizikia fusiformis methanolic extract on fish oil and linoleic acid. Food Sci Technol Int. 2004;10:65–72.CrossRefGoogle Scholar
  7. 7.
    Araújo JMA. Química de alimentos. Viçosa: UFV; 1999.Google Scholar
  8. 8.
    Bobbio FO, Bobbio AB. Introdução a química de alimentos. São Paulo: Varela; 1992.Google Scholar
  9. 9.
    American Oil Chemists Society (AOCS). American Oil Chemists Society: official and tentative methods. 3rd ed. Chicago: AOAC; 1985.Google Scholar
  10. 10.
    Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. 4th ed. São Paulo: IAL; 2008.Google Scholar
  11. 11.
    Hartman L, Lago RC. Rapid preparation of fatty acid methyl ester from lipids. Lab Pract. 1973;22:475–6.Google Scholar
  12. 12.
    Murugan P, Mahinpey N, Mani T. Thermal cracking and combustion kinetics of asphaltenes derived from Fosterton oil. Fuel Process Technol. 2009;90:1286–91.CrossRefGoogle Scholar
  13. 13.
    Rajeshwar K. Thermal analysis of coals, oil shales and oil sands. Thermochim Acta. 1983;63:97–112.CrossRefGoogle Scholar
  14. 14.
    Hellín LC, Clausell MPR. Incidence of frying in the composition of the lipid fraction of several snacks of generalized consumption in our country. Anal. Bromatol. 1984;36:5–31 (in Spanish).Google Scholar
  15. 15.
    Garcia CC, Franco PIBM, Zuppa TO, Antoniosi Filho NR, Leles MIG. Thermal stability studies of some cerrado plant oils. J Therm Anal Calorim. 2007;87:645–8.CrossRefGoogle Scholar
  16. 16.
    Souza AG, Dantas HJ, Silva MCD, Santos IMG, Fernandes VJ, et al. Thermal and kinetic evaluation of cotton oil biodiesel. J Therm Anal Calorim. 2007;90:945–9.CrossRefGoogle Scholar
  17. 17.
    Santos JCO, Santos IMG, Conceição MM, Porto SL, Trindade MFS, et al. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J Therm Anal Calorim. 2004;75:419–28.CrossRefGoogle Scholar
  18. 18.
    Reda SY. Estudo comparativo de óleos vegetais submetidos a estresse térmico. Ciência e Tecnologia de Alimentos, UEPG, Dissertação de Mestrado, 2004Google Scholar
  19. 19.
    Rodrigues FMG, Souza AG, Santos IMG, Bicudo TC, Silva MCD, Sinfrônio FSM, Vasconcelos AFF. Antioxidative properties of hydrogenated cardanol for cotton biodiesel by pdsc and uv/vis. J Therm Anal Calorim. 2009;97:605–9.CrossRefGoogle Scholar
  20. 20.
    Reda SY, Carneiro PB. Thermal oxidization study of vegetable oils by ultraviolet-visible spectroscopy. Rev Cienc Agron. 2009;40:48–53.Google Scholar
  21. 21.
    Rovellini P, Cortesi N, Fedeli E, et al. Lipid Oxidation. La Revista Italiana Delle Sostanze Grasse. 1997;74:181–9 (in Italian).Google Scholar
  22. 22.
    Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartscha H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer. 2000;36:1235–47.CrossRefGoogle Scholar
  23. 23.
    Barlow SM, Young V. World fish oils: an update. Hertfordshire: International Fishmeal and Oils Manufacturers Association; 1996. p. 33–7.Google Scholar
  24. 24.
    Shimada Y, Mauyama K, Sugihara A, Moriyama S, Tominaga Y. Purification of docosahexaenoic acid from tuna oil by a two-step enzymatic method: hydrolysis and selective esterification. J Am Oil Chem Soc. 1997;74:1441–6.CrossRefGoogle Scholar
  25. 25.
    Badolato ESG, Carvalho JB, Mello MRP. Centisimal composition of fatty acids and calorific value of five species of marine fishes at the different year seasons. Rev Inst Adolfo Lutz. 1994;54:27–35.Google Scholar
  26. 26.
    Silva SMCS, Kuga EK, Mancini-Filho J. Effect of processing on the polyunsaturated fatty acids of the lipid fraction of Sardinella brasiliensis and Mugil cephalus. Rev Farm Bioquim. 1993;29:41–6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • K. L. G. V. Araújo
    • 1
  • P. S. Epaminondas
    • 1
  • M. C. D. Silva
    • 2
  • A. E. A. de Lima
    • 3
  • R. Rosenhaim
    • 3
  • A. S. Maia
    • 3
  • L. E. B. Soledade
    • 3
  • A. L. Souza
    • 3
  • I. M. G. Santos
    • 3
  • A. G. Souza
    • 3
  • N. Queiroz
    • 3
  1. 1.Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, CTUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Centro de Ciências Sociais, Saúde e TecnologiaUniversidade Federal do MaranhãoImperatrizBrazil
  3. 3.Laboratório de Combustíveis e Materiais—LACOM, Departamento de QuímicaCCEN, Universidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations