Skip to main content
Log in

Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr2MgSi2O7:Eu2+,R3+ materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr2MgSi2O7:Eu2+,R3+ material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 °C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr2MgSi2O7:Eu2+,R3+ materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R3+ co-dopants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aitasalo T, Hölsä J, Jungner H, Lastusaari M, Niittykoski J. Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+. J Phys Chem B. 2006;110:4589–98.

    Article  CAS  Google Scholar 

  2. Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+. J Lumin. 1997;72–74:287–9.

    Article  Google Scholar 

  3. Lin Y, Tang Z, Zhang Z, Nan CW. Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors. Appl Phys Lett. 2002;81:996–8.

    Article  CAS  Google Scholar 

  4. Lin Y, Tang Z, Zhang Z, Wang X, Zhang J. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett. 2001;20:1505–6.

    Article  CAS  Google Scholar 

  5. de Chermont QL, Chanéac C, Seguin J, Pellé F, Maîtrejean S, Jolivet J-P, Gourier D, Bessodes M, Scherman D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci USA. 2007;104:9266–77.

    Article  Google Scholar 

  6. Hölsä J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. ECS Interface. 2009;18(4):42–5.

    Google Scholar 

  7. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J Electrochem Soc. 1996;143:2670–3.

    Article  CAS  Google Scholar 

  8. Dorenbos P. Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds. J Electrochem Soc. 2005;152:H107–10.

    Article  CAS  Google Scholar 

  9. Aitasalo T, Dereń P, Hölsä J, Jungner H, Krupa J-C, Lastusaari M, Legendziewicz J, Niittykoski J, Stręk W. Persistent luminescence phenomena in materials doped with rare earth ions. J Solid State Chem. 2003;171:114–22.

    Article  CAS  Google Scholar 

  10. Hölsä J, Kotlov A, Laamanen T, Lastusaari M, Malkamäki M, Welter E. Persistent luminescence of Sr3SiO5:Eu2+,R3+ (R: Y, La-Nd, Sm, Gd-Lu). In: Proceedings of excited states of transition elements 2010 (ESTE-2010), Piechowice, Poland, September 4–9, 2010. p. 49.

  11. Dorenbos P. Systematic behaviour in trivalent lanthanide charge transfer energies. J Phys. 2003;15:8417–34.

    CAS  Google Scholar 

  12. Dorenbos P. Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds. J Phys. 2003;15:4797–807.

    CAS  Google Scholar 

  13. Hölsä J, Niittykoski J, Kirm M, Laamanen T, Lastusaari M, Novák P, Raud J. Synchrotron radiation study of the M2MgSi2O7:Eu2+ persistent luminescence materials. ECS Trans. 2008;6:1–10.

    Article  Google Scholar 

  14. Dorenbos P. Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+. Phys Stat Sol B. 2005;242:R7–9.

    Article  CAS  Google Scholar 

  15. Chung KS. TL glow curve analyzer v. 1.0.3. Korea Atomic Energy Research Institute and Gyeongsang National University, Korea; 2008.

  16. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. Schwarz K, editors. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, 2001.

  17. Kimata M. The structural properties of synthetic Sr-åkermanite, Sr2MgSi2O7. Z Kristallogr. 1983;163:295–304.

    Article  CAS  Google Scholar 

  18. Fung KKL. Investigation of dosimetric characteristics of the high sensitivity LiF-Mg, Cu, P thermoluminescent dosemeter and its applications in diagnostic radiology–a review. Radiography. 2004;10:145–50.

    Article  Google Scholar 

  19. Mathur VK, Lewandowski AC, Guardala NA, Price JL. High dose measurements using thermoluminescence of CaSO4:Dy. Radiat Meas. 1999;30:735–8.

    Article  CAS  Google Scholar 

  20. Bos AJJ, Dorenbos P, Bessière A, Viana B. Lanthanide energy levels in YPO4. Radiat Meas. 2008;43:222–6.

    Article  CAS  Google Scholar 

  21. Dorenbos P, Bos AJJ, Poolton, NRJ. Electron transfer processes in double lanthanide activated YPO4. Opt Mater. 2010 (in press).

  22. Aitasalo T, Hassinen J, Hölsä J, Laamanen T, Lastusaari M, Malkamäki M, Niittykoski J, Novák P. Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+, R3+ persistent luminescence materials. J Rare Earths. 2009;4:529–38.

    Article  Google Scholar 

  23. Carlson S, Hölsä J, Laamanen T, Lastusaari M, Malkamäki M, Niittykoski J, Valtonen R. X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+, R3+ persistent luminescence materials. Opt Mater. 2009;31:1877–9.

    Article  CAS  Google Scholar 

  24. Clabau F, Rocquefelte X, Le Mercier T, Deniard P, Jobic S, Whangbo M-H. Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem Mater. 2006;18:3212–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged from the Turku University Foundation, Jenny and Antti Wihuri Foundation (Finland) and the Academy of Finland (contracts #117057/2000, #123976/2006, and #134459/2009). The DFT calculations were carried out using the supercomputing resources of the CSC IT Center for Science (Espoo, Finland). The study was supported by the research mobility agreements (112816/2006/JH and 116142/2006/JH, 123976/2007/TL) between the Academy of Finland and the Academy of Sciences of the Czech Republic, as well as the Czech research project AVOZ10100521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Lastusaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brito, H.F., Hassinen, J., Hölsä, J. et al. Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. J Therm Anal Calorim 105, 657–662 (2011). https://doi.org/10.1007/s10973-011-1403-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1403-2

Keywords

Navigation