Skip to main content
Log in

Sulfate intercalated layered double hydroxides prepared by the reformation effect

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The removal of the sulfate anion from water using synthetic hydrotalcite (Mg/Al LDH) was investigated using powder X-ray diffraction (XRD) and thermogravimetric analysis (TG). Synthetic hydrotalcite Mg6Al2(OH)16(CO3)·4H2O was prepared by the co-precipitation method from aluminum and magnesium chloride salts. The synthetic hydrotalcite was thermally activated to a maximum temperature of 380 °C. Samples of thermally activated hydrotalcite where then treated with aliquots of 1000 ppm sulfate solution. The resulting products where dried and characterized by XRD and TG. Powder XRD revealed that hydrotalcite had been successfully prepared and that the product obtained after treatment with sulfate solution also conformed well to the reference pattern of hydrotalcite. The d(003) spacing of all samples was found to be within the acceptable region for a LDH structure. TG revealed all products underwent a similar decomposition to that of hydrotalcite. It was possible to propose a reasonable mechanism for the thermal decomposition of a sulfate containing Mg/Al LDH. The similarities in the results may indicate that the reformed hydrotalcite may contain carbonate anion as well as sulfate. Further investigation is required to confirm this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bouzaid J, Frost RL. Thermal decomposition of stichite. J Therm Anal Calorim. 2007;89(1):133–5.

    Article  CAS  Google Scholar 

  2. Frost RL, Erickson KL. Decomposition of the synthetic hydrotalcites mountkeithite and honessite-a high resolution thermogravimetric analysis and infrared emission spectroscopic study. Thermochim Acta. 2004;421(1–2):51–8. doi:10.1016/j.tca.2004.04.008.

    Article  CAS  Google Scholar 

  3. Frost RL, Palmer SJ, Grand L-M. Synthesis and thermal analysis of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16·4H2O. J Therm Anal Calorim. 2010;101(3):859–63.

    Article  CAS  Google Scholar 

  4. Bakon KH, Palmer SJ, Frost RL. Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni, Co)6Fe(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2010;100(1):125–31.

    Article  CAS  Google Scholar 

  5. Grand L-M, Palmer SJ, Frost RL. Synthesis and thermal stability of hydrotalcites containing gallium. J Therm Anal Calorim. 2009;. doi:10.1007/s10973-009-0456-y.

    Google Scholar 

  6. Grand L-M, Palmer SJ, Frost RL. Synthesis and thermal stability of hydrotalcites containing manganese. J Therm Anal Calorim. 2009;. doi:10.1007/s10973-009-0402-z.

    Google Scholar 

  7. Pesic L, Salipurovic S, Markovic V, Vucelic D, Kagunya W, Jones W. Thermal characteristics of a synthetic hydrotalcite-like material. J Mater Chem. 1992;2(10):1069–73. doi:10.1039/jm9920201069.

    Article  CAS  Google Scholar 

  8. Rives V. Characterisation of layered double hydroxides and their decomposition products. Mater Chem Phys. 2002;75:19–25.

    Article  CAS  Google Scholar 

  9. Frost RL, Palmer SJ, Spratt HJ. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95(1):123–9.

    Article  Google Scholar 

  10. Frost RL, Bouzaid JM, Martens WN. Thermal decomposition of the composite hydrotalcites of iowaite and woodallite. J Therm Anal Calorim. 2007;89(2):511–9.

    Article  Google Scholar 

  11. Węgrzyn A, Rafalska-Łasocha A, Majda D, Dziembaj R, Papp H. The influence of mixed anionic composition of Mg–Al hydrotalcites on the thermal decomposition mechanism based on in situ study. J Therm Anal Calorim. 2010;99(2):443–57.

    Article  Google Scholar 

  12. Erickson KL, Bostrom TE, Frost RL. A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Mater Lett. 2004;59(2–3):226–9. doi:10.1016/j.matlet.2004.08.035.

    Google Scholar 

  13. Grand L-M, Palmer SJ, Frost RL. Synthesis and thermal stability of hydrotalcites based upon gallium. J Therm Anal Calorim. 2010;101(1):195–8. doi:10.1007/s10973-009-0456-y.

    Article  CAS  Google Scholar 

  14. Rives V, editor. Layered double hydroxides: present and future. New York: Nova Science Pub Inc; 2001.

    Google Scholar 

  15. Das DP, Das J, Parida K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J Colloid Interface Sci. 2002;261:213–20.

    Article  Google Scholar 

  16. Liu R, Frost RL, Martens WN. Absorption of the selenite anion from aqueous solutions by thermally activated layered double hydroxide. Water Res. 2009;43(5):1323–9. doi:10.1016/j.watres.2008.12.030.

    Article  CAS  Google Scholar 

  17. Liang L, Li L. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. J Radioanal Nucl Chem. 2006;273(1):221–6.

    Article  Google Scholar 

  18. Palmer SJ, Frost RL. Use of Hydrotalcites for the Removal of Toxic Anions from Aqueous Solutions. Ind Eng Chem Res. 2010;49(19):8969–76. doi:10.1021/ie101104r.

    Article  CAS  Google Scholar 

  19. Frost RL, Musumeci AW. Nitrate absorption through hydrotalcite reformation. J Colloid Interface Sci. 2006;302(1):203–6. doi:10.1016/j.jcis.2006.06.024.

    Article  CAS  Google Scholar 

  20. Frost R, Bouzaid J, Martens W, Kloprogge T. Thermal decomposition of the synthetic hydrotalcite woodallite. J Therm Anal Calorim. 2006;86(2):437–41.

    Article  CAS  Google Scholar 

  21. Frost RL, Adebajo MO, Erickson KL. Raman spectroscopy of synthetic and natural iowaite. Spectrochim Acta A. 2005;61A(4):613–20. doi:10.1016/j.saa.2004.05.015.

    CAS  Google Scholar 

  22. Frost RL, Bouzaid JM, Musumeci AW, Kloprogge JT, Martens WN. Thermal decomposition of the synthetic hydrotalcite iowaite. J Therm Anal Calorim. 2006;86:437–41.

    Article  CAS  Google Scholar 

  23. Frost RL, Erickson KL. Thermal decomposition of natural iowaite. J Therm Anal Calorim. 2004;78(2):367–73.

    Article  CAS  Google Scholar 

  24. Frost RL, Martens WN, Erickson KL. Thermal decomposition of the hydrotalcite. J Therm Anal Calorim. 2005;82:603–8.

    Article  CAS  Google Scholar 

  25. Frost RL, Palmer SJ, Nguyen TM. Thermal decomposition of hydrotalcite with molybdate and vandate anions in the interlayer. J Therm Anal Calorim. 2008;92(3):879–86.

    Article  Google Scholar 

  26. Spratt HJ, Palmer SJ, Frost RL. Thermal decomposition of synthesised layered double hydroxides based upon Mg/(Fe, Cr) and carbonate. Thermochim Acta. 2008;479(1–2):1–6. doi:10.1016/j.tca.2008.08.016.

    Article  CAS  Google Scholar 

  27. Lin Y-H, Adebajo MO, Frost RL, Kloprogge JT. Thermogravimetric analysis of hydrotalcites based on the takovite formula NixZn6-xAl2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2005;81:83–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial and infra-structure support of the Chemistry Discipline of the Faculty of Science and Technology, Queensland University of Technology is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theiss, F.L., Palmer, S.J., Ayoko, G.A. et al. Sulfate intercalated layered double hydroxides prepared by the reformation effect. J Therm Anal Calorim 107, 1123–1128 (2012). https://doi.org/10.1007/s10973-011-1369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1369-0

Keywords

Navigation