Skip to main content
Log in

Kinetics and mechanism of degradation of Co(II)–N-benzyloxycarbonylglycinato complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of multi-step thermal degradation of Co(II) complex with N-benzyloxycarbonyl glycinato ligand [Co(N-Boc-gly)2(H2O)4]·2H2O, in non-isothermal conditions was studied using isoconversional and non-isoconversional methods. The degradation of complex occurs in three well-separated steps involving the loss of water molecules in first step followed by two degradation steps of dehydrated complex. The dependence of Arrhenius parameters on conversion degree showed that all observed steps of thermal degradation are very complex, involving more than one elementary step, as can be expected for most solid-state heterogeneous reactions with solid reactants and solid and gaseous products. It was shown that step 1, corresponding to the dehydration, involves a series of competitive dehydration steps of differently bound water molecules complicated by diffusion. Second step involves two parallel reactions related to the loss of two identical C6H5CH2O– ligand fragments complicated by the presence of products in gaseous state. Further degradation in step 3 corresponds to complex process with a change in the limiting stage, in this case from the kinetic to the diffusion regime, connected with the presence of gaseous products diffusing through the solid product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sreenivasulu B. Diphenoxo-bridged copper(II) complexes of reduced schiff base ligands as functional models for catechol oxidase. Aust J Chem. 2009;62:968–79.

    Article  CAS  Google Scholar 

  2. Kadyrov MA, Mutalibov AS. Synthesis and study of mono- and dinuclear cobalt(II) complexes with N-substituted pyridoxalidene derivatives of α-amino acids. O’zb Kim J. 2003;3:16–21.

    Google Scholar 

  3. Perez-Cadenas A, Godino-Salido L, Lopez-Garzon R, Arranz-Mascaros P, Gutierrez-Valero D, Cuesta-Martos R. The reactivity of N-2-(4-amino-1,6-dihydro-1-methyl-5-nitroso-6-oxopyrimidinyl)-l-histidine towards copper(II) ions. Transition Met Chem. 2001;26:581–7.

    Article  CAS  Google Scholar 

  4. Saladini M, Iacopino D, Menabue L. Metal(II) binding ability of a novel N-protected amino acid. A solution-state investigation on binary and ternary complexes with 2,2’-bipyridine. J Inorg Biochem. 2000;78:355–61.

    Article  CAS  Google Scholar 

  5. Godino Salido ML, Arranz Mascaros P, Lopez Garzon R, Gutierrez Valero MD, Low JN, Gallagher JF, Glidewell C. Hydrated metal(II) complexes of N-(6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl) derivatives of glycine, glycylglycine, threonine, serine, valine and methionine: a monomeric complex and coordination polymers in one, two and three dimensions linked by hydrogen bonding. Acta Crystallogr B. 2004;60:46–64.

    Article  Google Scholar 

  6. Herrick RS, Dupont J, Wrona I, Pilloni J, Beaver M, Benotti M, Powers F, Ziegler CJ. Preparation and characterization of d6 tungsten compounds with amino acid derivatized diimine ligands and preparation of dipeptide derivatives using peptide coupling agents. J Organomet Chem. 2007;692:1226–33.

    Article  CAS  Google Scholar 

  7. Jiang T, Zhang Z, Wan S. Preparation of benzisoselenazolone aminosugar derivative as antitumor agent. Faming Zhuanli Shenqing Gongkai Shuomingshu. 2007;A:CN 101016319.

    Google Scholar 

  8. Baxter AD, Montana J, Owen DA. Preparation and therapeutic use of sulfhydryl and acylthio peptide amides as matrix metalloproteinase and tumor necrosis factor inhibitors. PCT Int Appl. 1996;A1:WO 9635687.

    Google Scholar 

  9. Pinel AM. Preparation of novel peptide derivatives and their therapeutic and cosmetic application. PCT Int Appl. 2003;A2:WO 2003064458.

    Google Scholar 

  10. Lambert DM, Geurts M, Scriba GKE, Poupaert JH, Dumont P. Simple derivatives of amino acid neurotransmitters. Anticonvulsant evaluation of derived amides, carbamates and esters of glycine and beta-alanine. J Pharm Belg. 1995;50:194–203.

    CAS  Google Scholar 

  11. Nomiya K, Takahashi S, Noguchi R, Nemoto S, Takayama T, Oda M. Synthesis and characterization of water-soluble silver(I) complexes with l-histidine (H2his) and (S)-(−)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and {[Ag(Hpyrrld)]2}n in the solid state. Inorg Chem. 2000;39:3301–11.

    Article  CAS  Google Scholar 

  12. Nomiya K, Takahashi S, Noguchi R. Water-soluble silver(I) complexes of (R)-(+)- and (S)-(–)-2-pyrrolidone-5-carboxylic acid and their antimicrobial activities. Chiral helical polymer and polymer sheet structures in the solid-state formed by self-assembly of dimeric [Ag(Hpyrrld)]2 cores. J Chem Soc Dalton Trans. 2000;4369–73.

  13. Nomiya K, Takahashi S, Noguchi R. Synthesis and crystal structure of three silver(I) complexes with (S)-(+)-5-oxo-2-tetrahydrofurancarboxylic acid (S-Hothf) and its isomeric forms (R-Hothf and R,S-Hothf) showing wide spectra of effective antibacterial and antifungal activities. Chiral helical polymers in the solid state formed by self-assembly of the dimeric [Ag(othf)]2 cores. J Chem Soc Dalton Trans. 2000;1343-8.

  14. Chikaraishi Kasuga NC, Yamamoto R, Hara A, Amano A, Nomiya K. Molecular design, crystal structure, antimicrobial activity and reactivity of light-stable and water-soluble Ag–O bonding silver(I) complexes, dinuclear silver(I) N-acetylglycinate. Inorg Chim Acta. 2006;359:4412–6.

    Article  Google Scholar 

  15. Mitić D, Milenković M, Milosavljević S, Gođevac D, Miodragović Z, Anđelković K, Miodragović Đ. Synthesis, characterization and antimicrobial activity of Co(II), Zn(II) and Cd(II) complexes with N-benzyloxycarbonyl-S-phenylalanine. Eur J Med Chem. 2009;44:1537–44.

    Article  Google Scholar 

  16. Miodragović ĐU, Mitić DM, Miodragović ZM, Bogdanović GA, Vitnik ŽJ, Vitorović MD, Radulović MĐ, Nastasijević BJ, Juranić IO, Anđelković KK. Syntheses, characterization and antimicrobial activity of the first complexes of Zn(II), Cd(II) and Co(II) with N-benzyloxycarbonylglycine: X-ray crystal structure of the polymeric Cd(II) complex. Inorg Chim Acta. 2008;361:86–94.

    Article  Google Scholar 

  17. Šumar-Ristović MT, Minić DM, Poleti D, Miodragović Z, Miodragović Đ, Anđelković KK. Thermal stability and degradation of Co(II), Cd(II), and Zn(II) complexes with N-benzyloxycarbonylglycinato ligand. J Thermal Anal Calorim. 2010;102:83–90.

    Article  Google Scholar 

  18. Ababei LV, Kriza A, Musuc AM, Andronescu C, Rogozea EA. Thermal behaviour and spectroscopic studies of complexes of some divalent transitional metals with 2-benzoil-pyridilizonicotinoylhydrazone. J Therm Anal Calorim. 2010;101:987–96.

    Article  CAS  Google Scholar 

  19. Asadi M, Ghatee MH, Torabi S, Mohammadi K, Moosavi F. Synthesis, characterization, ab initio calculations, thermal behaviour and thermodynamics of some oxovanadium(IV) complexes involving O, O- and N, N-donor moieties. J Chem Sci. 2010;122(4):539–48.

    Article  CAS  Google Scholar 

  20. Khalil MMH, Ismail EH, Azim SA, Souaya ER. Synthesis, characterization, and thermal analysis of ternary complexes of nitrilotriacetic acid and alanine or phenylalanine with some transition metals. J Therm Anal Calorim. 2010;101:129–35.

    Article  CAS  Google Scholar 

  21. Serebryanskaya TV, Ivashkevich LS, Lyakhov AS, Gaponik PN, Ivashkevich OA. 1,3-Bis(2-alkyltetrazol-5-yl)triazenes and their Fe(II), Co(II) and Ni(II) complexes: synthesis, spectroscopy, and thermal properties. Crystal structure of Fe(II) and Co(II) 1, 3-bis(2-methyltetrazol-5-yl)triazenide complexes. Polyhedron. 2010;29:2844–50.

    Article  CAS  Google Scholar 

  22. Doğan F, Dayan O, Yürekli M, Çetinkaya B. Thermal study of ruthenium(II) complexes containing pyridine-2,6-diimines. J Therm Anal Calorim. 2008;91:943–9.

    Article  Google Scholar 

  23. Doğan F, Ulusoy M, Öztürk ÖF, Kaya İ, Salih B. Synthesis, characterization and thermal study of some tetradentate Schiff base transition metal complexes. J Therm Anal Calorim. 2009;98:785–92.

    Article  Google Scholar 

  24. Sun J, Lu Z, Li Y, Dai J. Thermal behaviour and decomposition kinetics for two palladium(II) complexes with 1-aminopyrene and its derivative. J Therm Anal Calorim. 1999;58:383–91.

    Article  CAS  Google Scholar 

  25. Zsakó J, Pokol G, Novák Cs, Várhelyi Cs, Dobó A, Liptay G. Kinetic analysis of TG Data XXXV. Spectroscopic and thermal studies of some cobalt(III) chelates with ethylenediamine. J Therm Anal Calorim. 2001;64:843–56.

    Article  Google Scholar 

  26. Bajpai A, Tiwari S. Application of thermogravimetric analysis for characterisation of bisdithiocarbamate of urea and its copper (II) complex. Thermochim Acta. 2004;411:139–48.

    Article  CAS  Google Scholar 

  27. Al-Maydama H, El-Shekeil A, Khalid MA, Al-Karbouly A. Thermal degradation behaviour of some polydithiooxamide metal complexes. Eclética Quim. 2006;31:45–52.

    CAS  Google Scholar 

  28. Shen XQ, Li ZJ, Niu YL, Qiao HB. Crystal structure, thermal behavior, and non-isothermal kinetics of a new dinuclear Ni(II) complex. Synth React Inorg Met-Org Chem. 2009;39:55–9.

    CAS  Google Scholar 

  29. Kaya I, Solguntekin A. Synthesis, characterization, and kinetic of thermal degradation of oligo-2-[(4-bromophenylimino)methyl]phenol and oligomer-metal complexes. J Appl Polym Sci. 2009;113:1994–2007.

    Article  CAS  Google Scholar 

  30. Guinesi LS, Ribeiro CA, Crespi MS, Veronezi AM. (II)-EDTA complex kinetic of thermal decomposition by non-isothermal procedures. Thermochim Acta. 2004;414:35–42.

    Article  CAS  Google Scholar 

  31. Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermo-oxidative degradation of polymers and polymeric materials. Polym Degrad Stab. 2005;89:265–73.

    Article  CAS  Google Scholar 

  32. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Linert W. Detecting isokinetic relationships in non-isothermal systems by the isoconversional method. Thermochim Acta. 1995;269(/270):61–72.

    Article  Google Scholar 

  35. Brown ME, Dollimore D, Galwey AK. Reaction in the solid state: comprehensive chemical kinetics. In: Bamford CH, Tipper CFH, editors. Amsterdam: Elsevier, 1980. p. 22.

  36. Dollimore D, Tong P, Alexander KS. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta. 1996;282(/283):13–27.

    Article  Google Scholar 

  37. Vyazovkin S, Wight C. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  38. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  39. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  40. Akahira T, Sunose T. Trans joint convention of four electrical institutes, Paper No. 246, 1969. Research Report. Chiba Institute of Technology. 1971;16:22–31.

    Google Scholar 

  41. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A. 1966;70:487–523.

    CAS  Google Scholar 

  42. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  43. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  44. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the Universality of Master Plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  45. Vyazovkin S, Linert W. The application of isoconversional methods for analyzing isokinetic relationships occurring at thermal decomposition of solids. J Solid State Chem. 1995;114:392–8.

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. 1. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:273–80.

    Article  CAS  Google Scholar 

  47. Lyakhov NZ, Maciejewski M, Reller A. Theoretical considerations on the temperature and pressure dependence of the kinetics of reversible thermal decomposition processes of solids. J Solid State Chem. 1985;58:398–400.

    Article  CAS  Google Scholar 

  48. Vyazovkin S, Linert W. Evaluation and application of isokinetic relationships: the thermal decomposition of solids under nonisothermal conditions. J Chem Inf Comput Sci. 1994;34:1273–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia, Grant Nos. 172015, 172055 and 45007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragica M. Minić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minić, D.M., Šumar-Ristović, M.T., Miodragović, Đ.U. et al. Kinetics and mechanism of degradation of Co(II)–N-benzyloxycarbonylglycinato complex. J Therm Anal Calorim 107, 1167–1176 (2012). https://doi.org/10.1007/s10973-011-1368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1368-1

Keywords

Navigation