Journal of Thermal Analysis and Calorimetry

, Volume 105, Issue 3, pp 1015–1021 | Cite as

Stability studies of capecitabine

  • M. Łaszcz
  • K. Trzcińska
  • K. Filip
  • A. Szyprowska
  • M. Mucha
  • P. Krzeczyński
Article

Abstract

Differential scanning calorimetry and thermogravimetry techniques were successfully used for stability studies of capecitabine. Decreasing values of melting temperature, heat of fusion, and peak purity calculated from the Van’t Hoff equation indicated the gradual decomposition of capecitabine stored at 40 °C in 75% of relative humidity. The increase in mass loss connected with the water sorption was observed simultaneously. High performance liquid chromatography proved the results of thermoanalytical studies. Infrared spectroscopy (IR) appeared to have the lower sensitivity for the decomposition products detection.

Keywords

Thermal analysis IR HPLC Capecitabine 

Supplementary material

10973_2011_1351_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 33 kb)

References

  1. 1.
    Stec R, Bodnar L, Szczylik C. Capecitabine in palliative chemotherapy of colorectal cancer–efficacy and toxicity. Contemp Oncol. 2009;13:167–76.Google Scholar
  2. 2.
    ICH, Q 1 A (R2) guideline, August 2003, CPMP/ICH/2736/99.Google Scholar
  3. 3.
    Lizarraga E, Zabaleta C, Palop JA. Thermal stability and decomposition of pharmaceutical compounds. J Therm Anal Calorim. 2007;89:783–92.CrossRefGoogle Scholar
  4. 4.
    Rezende RLO, Santoro MIRM, Matos JR. Stability and compatibility study on enalapril maleate using thermoanalytical techniques. J Therm Anal Calorim. 2008;93:881–6.CrossRefGoogle Scholar
  5. 5.
    Michalik K, Drzazga Z, Michnik A, Kaszuba M. Thermal stability study of the protease inhibitors Nelfinavir mesylate and atazanavir sulfate. J Therm Anal Calorim. 2007;88:401–4.CrossRefGoogle Scholar
  6. 6.
    Howell BA, Chhetri P, Dumitrascu A, Stanton KN. Thermal degradation of platinum(IV) precursors to antitumor drugs. Therm Anal Calorim. 2010;102:499–503.CrossRefGoogle Scholar
  7. 7.
    Mocanu AM, Odochian L, Apostolescu N, Moldoveanu C. Comparative study on thermal degradation of some new diazoaminoderivatives under air and nitrogen atmospheres. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-0857-y.Google Scholar
  8. 8.
    Cheng X-X, Lui Y, Hu Y-J, Liu Y, Li L-W, Di Y-Y, Xiao X-H. Thermal behavior and thermodynamic properties of berberine hydrochloride. J Therm Anal Calorim. 2009. doi:10.1007/s10973-009-0288-9.Google Scholar
  9. 9.
    Ławecka M, Kosmacińska B, Glice M, Korczak K. The influence of storage conditions on the polymorphic stability of zolpidem tartrate hydrate. J Therm Anal Calorim. 2006;83:583–5.CrossRefGoogle Scholar
  10. 10.
    Kojima T, Yamauchi Y, Onoue S, Tsuda Y. Evaluation of hydrate formation of a pharmaceutical solid by using diffuse reflectance infrared Fourier-transform spectroscopy. J Pharm Biomed Anal. 2008;46:788–91.CrossRefGoogle Scholar
  11. 11.
    Plano D, Lizarraga E, Palop JA, Sanmartín C. Study of polymorphism of organosulfur and organoselenium compounds. J Therm Anal. 2010. doi:10.1007/s10973-010-1012-5.Google Scholar
  12. 12.
    Giron D, GoMbronn C. Place of DSC purity analysis in pharmaceutical development. J Therm Anal. 1995;44:217–51.CrossRefGoogle Scholar
  13. 13.
    Yamamoto K, Momota M, Katayama S, Narita K. Determination of the purity of multi-component organic substances by DSC. Anal Sci. 1998;14:599–602.CrossRefGoogle Scholar
  14. 14.
    Faroongsarng D, Kadejinda W, Sunthornpit A. Thermal behaviour of a pharmaceutical solid acetaminophen doped with p-aminophenol. AAPS PharmSciTech. 2000;1(3) article 23.Google Scholar
  15. 15.
    Swarbrick J. Encyclopedia of pharmaceutical technology. vol 6. 3rd ed. New York: Informa Healthcare; 2006.Google Scholar
  16. 16.
    The actual edition of USP Pharmacopeia, chapter 891.Google Scholar
  17. 17.
    Thermal Analysis UserCom 10, Mettler-Toledo, Inc, 1900 Polaris parkway, Columbus; 43240.Google Scholar
  18. 18.
    Mathkar S, Kumar S, Bystola A, Olawoorea K, Mina D, Markovicha R, Rustuma A. The use of differential scanning calorimetry for the purity verification of pharmaceutical reference standards. J Pharm Biomed Anal. 2009;49:627–31.CrossRefGoogle Scholar
  19. 19.
    Salvador A, Millerioux L, Renou A. Simultaneous LC-MS-MS analysis of capecitabine and its metabolites (5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil) after off-line SPE from human plasma. Chromatographia. 2006;63:609–15.CrossRefGoogle Scholar
  20. 20.
    Xu Y, Grem JL. Liquid chromatography–mass spectrometry method for the analysis of the anti-cancer agent capecitabine and its nucleoside metabolites in human plasma. J Chromatogr B. 2003;783:273–85.CrossRefGoogle Scholar
  21. 21.
    The actual edition of USP Pharmacopeia. Capecitabine; 1774.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • M. Łaszcz
    • 1
  • K. Trzcińska
    • 1
  • K. Filip
    • 1
  • A. Szyprowska
    • 1
  • M. Mucha
    • 1
  • P. Krzeczyński
    • 2
  1. 1.Department of R and D Analytical ChemistryPharmaceutical Research InstituteWarsawPoland
  2. 2.Department of ChemistryPharmaceutical Research InstituteWarsawPoland

Personalised recommendations