Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth


A simple stoichiometric model is proposed linking the biomass yield to the enthalpy and Gibbs energy changes in chemo-heterotrophic, mixotrophic, and photo-autotrophic microbial growth. A comparison with calorimetric experiments on the algae Chlorella vulgaris and Chlorella sorokiniana confirmed the trends but revealed large calorimetric measurement inaccuracies. The calorimetric data on purely photo-autotrophic growth was, however, in fair agreement with calculations. The thermodynamic characteristics of photosynthetic growth, including an estimation of the Gibbs energy dissipation, are compared with similar data for chemotrophic microbes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Cooney CL, Wang DIC, Mateles RI. Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol Bioeng. 1968;11:269–81.

    Article  Google Scholar 

  2. 2.

    Luong JHT, Volesky B. A new technique for continuous measurement of the heat of fermentation. Eur J Appl Microbiol Biotechnol. 1982;16:28.

    Article  CAS  Google Scholar 

  3. 3.

    Birou B, Marison IW, von Stockar U. The calorimetric investigation of aerobic fermentations. Biotechnol Bioeng. 1987;30:650–60.

    Article  CAS  Google Scholar 

  4. 4.

    Randolph TW, Marison IW, Berney C, von Stockar U. Bench scale calorimetry of hybridomas in suspension culture. Biotechnol Tech. 1989;3:369–74.

    Article  CAS  Google Scholar 

  5. 5.

    Marison IW, von Stockar U. Large-scale calorimetry and biotechnology. Thermochim Acta. 1991;193:215–42.

    Article  Google Scholar 

  6. 6.

    Kemp RB, Guan YH. The application of heat flux measurement to improve the growth of mammalian cells in culture. Thermochim Acta. 2000;332:23–30.

    Article  Google Scholar 

  7. 7.

    Maskow T, Babel W. Calorimetric investigation of bacterial growth on phenol. Thermochim Acta. 1998;309:97–103.

    Article  CAS  Google Scholar 

  8. 8.

    von Stockar U, Liu JS. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim Biophys Acta. 1999;1412:191–211.

    Article  Google Scholar 

  9. 9.

    Liu JS, Marison W, von Stockar U. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on Acetotrophic Methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng. 2001;75:170–80.

    Article  CAS  Google Scholar 

  10. 10.

    Magee JL, DeWitt TW, Coolidge E, Smith F, Daniels F. A photocalorimeter. The quantum efficiency of photosynthesis in algae. J Am Soc. 1939;61:3529–33.

    Article  CAS  Google Scholar 

  11. 11.

    Johansson P, Wadsö I. A photo microcalorimetric system for studies in plant tissue. J Biochem Biophys Methods. 1997;35:103–14.

    Article  CAS  Google Scholar 

  12. 12.

    Battley EH. Studies on anaerobic growth of a biotype of Chlorella vulgaris. Antonio van Leeuwenhoek. 1968;30:81–96.

    Article  Google Scholar 

  13. 13.

    Janssen M, Patiño R, von Stockar U. Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochim Acta. 2005;435:18–27.

    Article  CAS  Google Scholar 

  14. 14.

    Patiño R, Janssen M, von Stockar U. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Biotechnol Bioeng. 2007;96:757–67.

    Article  Google Scholar 

  15. 15.

    Janssen M, Wijffels R, von Stockar U. Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochim Acta. 2007;458:54–64.

    Article  CAS  Google Scholar 

  16. 16.

    von Stockar U, Vojinovic V, Maskow T, Liu JS. Can microbial growth yield be estimated using simple thermodynamic analogies to technical processes? Chem Eng Process. 2008;47:980–90.

    Google Scholar 

  17. 17.

    von Stockar U, Maskow T, Liu JS, Marison WI, Patiño R. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol. 2006;121:517–33.

    Article  Google Scholar 

  18. 18.

    Heijnen JJ, van Dijken JP. In search of thermodynamic description of biomass yields for the chemotrophic growth of micro-organisms. Biotechnol Bioeng. 1992;39:833–58.

    Article  CAS  Google Scholar 

  19. 19.

    Heijnen JJ, van Dijken JP. Response to comments on: in search of a thermodynamic description of biomass yields for the chemotrophic growth of micro-organisms. Biotechnol Bioeng. 1993;42:1127–30.

    Article  CAS  Google Scholar 

  20. 20.

    Liu JS, Vojinovic V, Patiño R, Maskow T, von Stockar U. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields. Thermochim Acta. 2007;458:38–46.

    Article  CAS  Google Scholar 

  21. 21.

    Roels JA. Energetics and kinetics in biotechnology. Amsterdam: Elsevier Biomedical Press; 1983.

    Google Scholar 

  22. 22.

    von Stockar U. Biothermodynamics of live cells. A tool for biochemical engineering. J Non-Equilib Thermodyn. 2010;35:415–75.

    Google Scholar 

Download references


The authors gratefully acknowledge important funding for this work by the Swiss National Science Foundation (SNF).

Author information



Corresponding author

Correspondence to Urs von Stockar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Stockar, U., Marison, I., Janssen, M. et al. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth. J Therm Anal Calorim 104, 45–52 (2011).

Download citation


  • Bio-photo calorimetry
  • Reaction calorimetry
  • Photosynthetic growth
  • Mixotrophic growth
  • Clorella vulgaris
  • Biological dissipation of Gibbs energy