Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 1, pp 45–52 | Cite as

Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth

  • Urs von StockarEmail author
  • Ian Marison
  • Marcel Janssen
  • Rodrigo Patiño
Article

Abstract

A simple stoichiometric model is proposed linking the biomass yield to the enthalpy and Gibbs energy changes in chemo-heterotrophic, mixotrophic, and photo-autotrophic microbial growth. A comparison with calorimetric experiments on the algae Chlorella vulgaris and Chlorella sorokiniana confirmed the trends but revealed large calorimetric measurement inaccuracies. The calorimetric data on purely photo-autotrophic growth was, however, in fair agreement with calculations. The thermodynamic characteristics of photosynthetic growth, including an estimation of the Gibbs energy dissipation, are compared with similar data for chemotrophic microbes.

Keywords

Bio-photo calorimetry Reaction calorimetry Photosynthetic growth Mixotrophic growth Clorella vulgaris Biological dissipation of Gibbs energy 

Notes

Acknowledgements

The authors gratefully acknowledge important funding for this work by the Swiss National Science Foundation (SNF).

References

  1. 1.
    Cooney CL, Wang DIC, Mateles RI. Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol Bioeng. 1968;11:269–81.CrossRefGoogle Scholar
  2. 2.
    Luong JHT, Volesky B. A new technique for continuous measurement of the heat of fermentation. Eur J Appl Microbiol Biotechnol. 1982;16:28.CrossRefGoogle Scholar
  3. 3.
    Birou B, Marison IW, von Stockar U. The calorimetric investigation of aerobic fermentations. Biotechnol Bioeng. 1987;30:650–60.CrossRefGoogle Scholar
  4. 4.
    Randolph TW, Marison IW, Berney C, von Stockar U. Bench scale calorimetry of hybridomas in suspension culture. Biotechnol Tech. 1989;3:369–74.CrossRefGoogle Scholar
  5. 5.
    Marison IW, von Stockar U. Large-scale calorimetry and biotechnology. Thermochim Acta. 1991;193:215–42.CrossRefGoogle Scholar
  6. 6.
    Kemp RB, Guan YH. The application of heat flux measurement to improve the growth of mammalian cells in culture. Thermochim Acta. 2000;332:23–30.CrossRefGoogle Scholar
  7. 7.
    Maskow T, Babel W. Calorimetric investigation of bacterial growth on phenol. Thermochim Acta. 1998;309:97–103.CrossRefGoogle Scholar
  8. 8.
    von Stockar U, Liu JS. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim Biophys Acta. 1999;1412:191–211.CrossRefGoogle Scholar
  9. 9.
    Liu JS, Marison W, von Stockar U. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on Acetotrophic Methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng. 2001;75:170–80.CrossRefGoogle Scholar
  10. 10.
    Magee JL, DeWitt TW, Coolidge E, Smith F, Daniels F. A photocalorimeter. The quantum efficiency of photosynthesis in algae. J Am Soc. 1939;61:3529–33.CrossRefGoogle Scholar
  11. 11.
    Johansson P, Wadsö I. A photo microcalorimetric system for studies in plant tissue. J Biochem Biophys Methods. 1997;35:103–14.CrossRefGoogle Scholar
  12. 12.
    Battley EH. Studies on anaerobic growth of a biotype of Chlorella vulgaris. Antonio van Leeuwenhoek. 1968;30:81–96.CrossRefGoogle Scholar
  13. 13.
    Janssen M, Patiño R, von Stockar U. Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochim Acta. 2005;435:18–27.CrossRefGoogle Scholar
  14. 14.
    Patiño R, Janssen M, von Stockar U. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Biotechnol Bioeng. 2007;96:757–67.CrossRefGoogle Scholar
  15. 15.
    Janssen M, Wijffels R, von Stockar U. Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochim Acta. 2007;458:54–64.CrossRefGoogle Scholar
  16. 16.
    von Stockar U, Vojinovic V, Maskow T, Liu JS. Can microbial growth yield be estimated using simple thermodynamic analogies to technical processes? Chem Eng Process. 2008;47:980–90.Google Scholar
  17. 17.
    von Stockar U, Maskow T, Liu JS, Marison WI, Patiño R. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol. 2006;121:517–33.CrossRefGoogle Scholar
  18. 18.
    Heijnen JJ, van Dijken JP. In search of thermodynamic description of biomass yields for the chemotrophic growth of micro-organisms. Biotechnol Bioeng. 1992;39:833–58.CrossRefGoogle Scholar
  19. 19.
    Heijnen JJ, van Dijken JP. Response to comments on: in search of a thermodynamic description of biomass yields for the chemotrophic growth of micro-organisms. Biotechnol Bioeng. 1993;42:1127–30.CrossRefGoogle Scholar
  20. 20.
    Liu JS, Vojinovic V, Patiño R, Maskow T, von Stockar U. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields. Thermochim Acta. 2007;458:38–46.CrossRefGoogle Scholar
  21. 21.
    Roels JA. Energetics and kinetics in biotechnology. Amsterdam: Elsevier Biomedical Press; 1983.Google Scholar
  22. 22.
    von Stockar U. Biothermodynamics of live cells. A tool for biochemical engineering. J Non-Equilib Thermodyn. 2010;35:415–75.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Urs von Stockar
    • 1
    • 2
    Email author
  • Ian Marison
    • 2
  • Marcel Janssen
    • 3
  • Rodrigo Patiño
    • 4
  1. 1.Swiss Federal Institute of Technology (EPFL)ISICLausanneSwitzerland
  2. 2.School of BiotechnologyDublin City University (DCU)Dublin 9Ireland
  3. 3.Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands
  4. 4.Departemento de Fisica AplicadaCINVESTAV—Unitad MéridaMéridaMexico

Personalised recommendations